

3121 E. Grand River Howell, MI 48843 517.546.4836 fax 517.548.1670 www.bosseng.com

February 24th, 2022

Ms. Kelly VanMarter, AICP Genoa Township Planning Commission 2911 Dorr Road Brighton, Michigan 48116

Re: Bible Baptist Church-Special Land Use and Site Plan Review

Dear Ms. VanMarter,

We have received the review letters from the Brighton Area Fire Authority, Tetra Tech, and SAFEbuilt dated February 16th, 2022 and February 17th, 2022 respectively, for the Bible Baptist Church site and offer the following comments:

<u>Tetra Tech</u>

General

- 1. Acknowledged. The plans are currently being reviewed by the Brighton Area Fire Authority.
- 2. We anticipate the traffic study being completed the week of February 28th through March 4th. It will be forwarded to the Township at that time.

Private Road

- 1. We acknowledge approval is needed by LCRC for the drive approach on Golf Club Road. We request approval by LCRC not needed prior to site plan, but rather prior to construction plan approval. Should the LCRC review result in significant changes to the drive approach or relocation of the drive approach, that results in changes to the proposed site then the site plan will be revised as necessary and reapproval of the site plan by the Planning Commission be obtained.
- 2. The proposed project is single ownership and thus is a commercial drive, not a private drive, although the drive has been designed to meet the private road standards.

Sanitary and Water Services

- 1. Acknowledged. Construction plans will be submitted to MHOG for review and approval after the Site Plan approval process.
- 2. Acknowledged. No action needed on the plans.
- 3. Acknowledged. More detail will be provided on the proposed lift station and forcemain during the construction plan review process by MHOG.

Drainage and Grading

- 1. Acknowledged. The plans have been revised to meet the updated LCDC design Standards.
- 2. The pond currently and historically has had an adjustable height outlet that is operated by the two homeowners abutting the pond. Meetings have been had with the adjacent landowner to determine the continue maintainability and adjustability of the pond while utilizing it for detention for the proposed project. Additional detail will be provided during the construction plan review process. An MDEGLE permit is obtained allowing the use of the pond/wetland for detention. Additional detail will be provided during the construction plan review process.
- 3. Proposed forebay sizing and storm sewer calculations are located on sheet 12. Sizing of each structure (catch basin/manhole) will be done during the construction plan review process and shown in the storm profiles at that time. The previously proposed central forebay has been revised to be treated via a mechanical pretreatment unit. A standard detail for the mechanical pretreatment unit is included on sheet 12.

SAFEbuilt

Summary

- 1. Special Land Use Standards of Section 19.03:
 - a. Acknowledged.
 - b. See exhibit 'A' at the end of this letter for sample pictures at the south property line that shows the existing vegetation.
 - c. The traffic study is anticipated to be completed the week of February 28th March 4th and will be sent to the Township once received. A drive is only proposed on Golf Club Road at this time. It is anticipated that the existing center left turn lane at Latson is to be extended through the proposed site approach to facilitate left turn movements for the church. The plans reflect such. Ultimately the traffic study will need to be approved by the LCRC along with the geometrics for the drive approach and any necessary Golf Club Road improvements in order to adequately service the church. The grading within the wetland setback at the north wetland is necessary simply given the existing site constraints between either the two wetlands or the wetland and the existing barn structure. The land within the natural features setback in this area is currently unvegetated so impact is negligible. The upland wetland that contains grading within the 25' natural features setback is a low-quality wetland with minimal hydrology. The wetland is within a large natural topographical draw, that send water to the western (of the two) upland wetland pockets. Ultimately, this wetland is proposed to be filled for the construction of the phase 2 parking lot and will require an MDEGLE permit.
 - d. The two upland wetland pockets are approximately 400 feet from the regulated wetlands on the north half of the site, which presumably makes the pockets regulated. MDEGLE has not verified the wetlands at this time and will not be able to do so until summer time. There is no grading activity within the wetland, which meets MDEGLE requirements. This wetland is within the anticipated future parking lot for phase 2 of the church and thus the owner will be pursuing an MDEGLE wetland fill permit for this activity. Lastly, the upland wetland pocket is a low-quality wetland. Any notable plants are dead and the topography is gently sloping towards the wetland pocket to the west. A few pictures were taken of the wetland to show its low quality.
 - e. Acknowledged. The project is currently under review by the Township Engineer and BAFA.
- 2. Use Requirements of Section 3.03.02(I):
 - a. A row of arborvitaes has been added to the south side of the western parking lot to supplement the existing vegetation that is to remain (between 30 feet and 45 feet of vegetation to remain south of the parking lot). The entire 60' rear yard setback behind the church building is left untouched. There is a minimum of 60 feet of vegetative buffer on the south side of the church. Refer to attached Exhibit 'A' for pictures of the existing vegetation.
 - b. The classrooms indicated on the floor plan are for Sunday school use which is in conjunction with the Sunday church services. No private school is planned at this time.
 - c. A private school is not proposed as a part of this project. See response 'b' above.
- 3. Site Plan Review:
 - a. There are multiple reasons the building materials were chosen as shown. One reason is that this is the first phase of the Bible Baptist Church building. Subsequent phases will expand the building to the east, west and north. Thus, much of the proposed metal siding will be removed. Additionally, the building is surrounded by existing vegetation and thus not seen by the general public. The north face of the building is 1,300 feet from Golf Club Road, the west face approximately 750 feet from the western property line, the south face of the building approximately 118 feet from the south property line, and the east face is approximately 300 feet from Latson Road. The remaining existing vegetation (outside the limits of disturbance) has been added on sheet 4 to show the extent of existing vegetative buffers.
 - b. Proposed building materials will be provided/displayed at the Planning Commission meeting as requested.

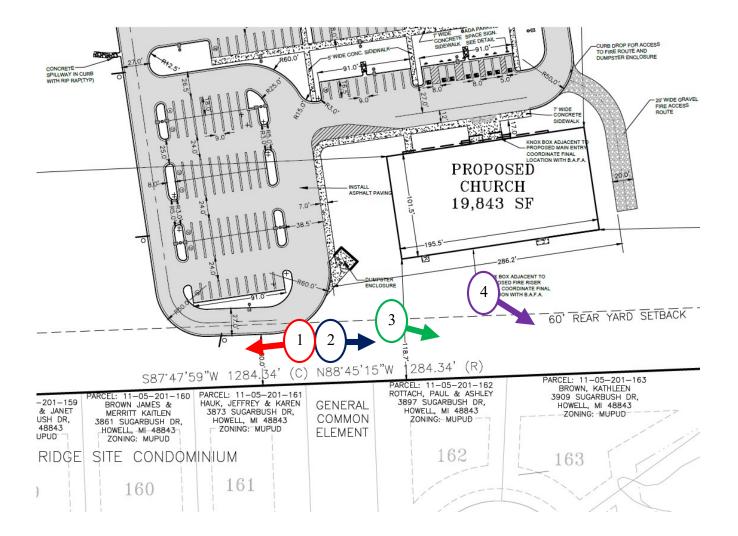
- c. An LCRC evaluation of Latson Road has Road improvements slated for the future. Road improvements, at this time, are expected to include additional lanes as well as vertical road adjustment. Both of these items affect the subject property and specifically the feasibility to install a bike path along Latson Road at this time. In addition to anticipated Latson Road improvements, the existing topography along Latson Road does not lend itself to contain a bike path until Road improvements are done. Lastly, this sidewalk would be a dead end on both sides at this time as the north end of the site is the Township limits and to the south there is approximately 600 feet to the existing sidewalk, much of which contains wetlands and is not feasible to cross at this time. The bike path along Latson Road shall be constructed at a more feasible time upon completion of any Latson Road improvements.
- d. A few of the curb radii have been enlarged to soften turning movements for the fire trucks. There are two curb drops on the project, one at the gravel fire access drive and one at the dumpster pad. The curb drop allows for drivable access by the fire truck or refuse truck as necessary and also maintains the perimeter curb around the parking lot.
- e. Acknowledged. The existing pond which is being utilized for detention has existing vegetation around its perimeter and the perimeter of the site also contains existing vegetative buffer. Thus minimal plantings are required for the parking lot landscaping and stormwater forebay plantings
- f. Sheet 4 includes the remaining existing vegetation(what is not included within the limits of disturbance).
- g. The landscape count discrepancies have been resolved.
- h. Shielding on light fixtures will be done to prevent light spilling
- i. The soccer field will not be illuminated.
- j. The Impact Assessment has been revised accordingly.

Brighton Area Fire Authority

- 1. The FDC connection has been relocated to the north face of the building at the northwest corner.
- Hydrant WTH 02 has been relocated further south to be within 100 feet of the FDC on the north face of the church. When the future church building is constructed, the FDC will need to be relocated on the new north face of the church and the hydrant WTH02, will need to be relocated along its currently proposed hydrant lead alignment.
- 3. Note 4 on the Church Campus Site Plan sheet 5, calls for the minimum 6" high address letters in contrasting color.
- 4. The east drive aisle in the north parking lot has been widened to 26 feet. All site drives on the fire access route are a minimum 26' face of curb to face of curb. Note 7 on sheet 5 indicates the 84,000 pound loading from the fire apparatus.
- 5. Multiple radii around the access route have been adjusted (or drive aisles widened) to accommodate the fire truck turning movements more cleanly within the lane of travel.
- 6. Note 8 on sheet 5 indicates the vertical clearance height along access routes.
- 7. The secondary emergency access drive has been relocated to the east side of the church where the elevation is more easily accommodating of the fire drive. The width is 20 feet and the overall length is just under the 150 foot threshold for a turnaround to be required. A cross section of the gravel drive is provided on sheet 13 along with a gate with knox box detail.
- 8. Notes indicating knox box locations at the main entry and fire riser room at the rear have been added to the site plan sheet 5.
- 9. Note 9 on sheet 5 has been added indicating the process for verifying the radio signal strength as outlined in the review letter.

Feel free to contact us should you have any questions, or if you are in need of any additional information.

Sincerely,


BOSS ENGINEERING COMPANY

cotto Tousegour <

Scott Tousignant, PE Project Manager

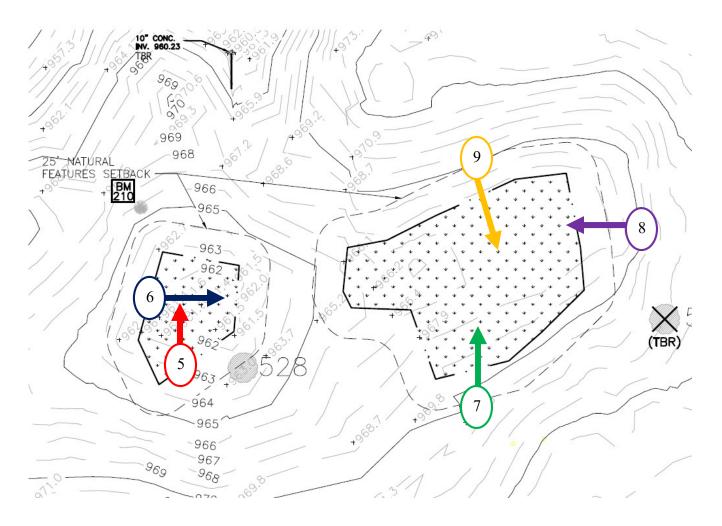
EXHIBIT A

Existing Vegetative Buffer on South Property Line

Picture 1 – looking westerly

Picture 2 – looking easterly

Picture 3 – looking easterly



Picture 4 – looking southeasterly

EXHIBIT B

Upland Wetland Pockets

Picture 5 – West Upland wetland pocket - looking northerly

Picture 6 – West Upland wetland pocket - looking easterly

Picture 7 – East Upland wetland pocket - looking northerly

Picture 8 – East Upland wetland pocket - looking westerly

Picture 9 – East Upland wetland pocket – dead vegetation

GENOA TOWNSHIP IMPACT ASSESSMENT

Prepared for:

Owner / Applicant Bible Baptist Church 2258 E. Highland Rd. Howell, Michigan 48843

Prepared by:

February 1, 2022

Revised: February 23, 2022

INTRODUCTION

The purpose of this Impact Assessment (IA) Report is to show the effect that the proposed church campus development has on various factors in the general vicinity of the use. The format used for presentation of this report conforms to the Submittal Requirements for Impact Assessment/Impact Statement Guidelines in accordance with Section 13.05 of the published Zoning Ordinance for Genoa Township, Livingston County, Michigan.

DISCUSSION ITEMS

A. Name(s) and address(es) of person(s) responsible for preparation of the Impact Assessment and a brief statement of their qualifications.

Prepared by:

Jennifer M. Austin, PLA Professional Landscape Architect and Project Manager Boss Engineering 3121 E Grand River Howell, MI 48843

Prepared for:

<u>Owner/Applicant:</u> Bible Baptist Church 2258 E. Highland Rd. Howell, MI 48843

B. Description of the site, including existing structures, man-made facilities, and natural features, all-inclusive to within 10' of the property boundary.

The project site is on parcel # 4711-05-200-002 in the NE ¼ of Section 5, Genoa Township, Livingston County, MI, and which the parcel at the southwest corner of Golf Club Road and Latson Road.

The subject site is bordered:

- To the north is the Genoa Township-Oceola Township line along Golf Club Road. The northern half of the subject property contains a 3+/- acre pond, a wetland and single family residence.
- To the east are RR and RPUD zoning on the opposite side of Latson Road.
- To the south is MUPUD zoning which contains the Rolling Ridge site condominium.
- To the west is RR zoning with single family residences.

Current zoning of the subject site is Low Density Residential (LDR),1 unit/acre. This new zoning designation was approved by the Genoa Township Planning Commission at the July 20, 2020 meeting. Sewer and Water are along entire the Easterly line (Latson Road) of the subject parcel and accessible at the Southerly property line at Sugarbush Drive.

C. Impact on natural features: A written description of the environmental characteristics of the site prior to development, i.e., topography, soils, vegetative cover, drainage, streams, creeks or ponds.

GENERAL OVERVIEW

AREA 1

The Northwesterly 10 acres of the site are the location of the existing residence. This area consists of two parts: The House, located on the top of a gently rolling hill, and the pond adjacent to the house along the southerly and westerly portions. The private entrance road to the proposed church campus will cross the easterly portion of this area.

AREA 2

The Northeasterly 10 acres of the site are relatively flat of which approximately 5 acres is a wetland. There are 2 man-made ditches within this wetland that flow northerly under Golf Club Road into a small wetland in Oceola Township. Stormwater management for this project will mostly be managed in this area by forebays to filter stormwater before discharge into the wetlands and/or pond.

AREA 3

The Southerly 26+ acres are gently sloped to moderately steep slopes. The entire area is heavily wooded with a mixture of evergreens and hardwoods. The northerly portion of Area 3 flows naturally north to the existing lake and/or the existing wetland. The southerly portion of Area 3 flows generally southeast into an existing drainage area along Latson Road.

The church campus and a portion of the driveway will be located in this area. Clearing of trees will be kept to a minimum by use of curb and gutter for the commercial drive.

WETLAND SETBACKS

The regulated wetlands on-site contain a 25 foot wetland setback per Township Ordinance. The proposed development includes grading within the 25 foot wetland setback at the east wetland, the open water pond as well as for the eastern of the two upland wetland pockets. The areas of disturbance within the setback on the east wetland and the open water pond will have no impact on the wetlands. Currently, the land is maintained up to the wetland limits in these areas with grass, in which the 25' is open. The disturbance will not disrupt crucial vegetation in this instance. Given the location of the wetlands and their proximity to each other, as well as their proximity to other existing structures on site, in order for the commercial drive to run southerly to access the developable portion of the parcel, work within the setback will be required.

There are two upland pocket wetlands near the proposed church and parking lots. No disturbance is proposed within the western upland pocket wetland. Disturbance is proposed to occur within the 25' wetland setback on the eastern upland wetland. Based on the topography and visual inspection, this wetland has very minimal water ponding as water typically flows through this area to ultimately pond at the western upland wetland pocket. The wetland vegetation quality is low, and the minimal trees within the wetland limits are dead. The wetland is of low quality and grading within the setback of this wetland does not impact the overall stormwater management on the site. Water is continuing to be directed to the western of the two wetland pockets.

SPECIFIC OVERVIEW

The soils and natural features throughout the site are specified on the Existing Conditions and Natural Features Sheets 2 and 3.

D. Impact on storm water management: description of soil erosion control measures during construction.

The preliminary site plan indicates stormwater management forebays and mechanical pretreatment units to be constructed during the infrastructure construction. These forebays and mechanical pretreatment units will pre-treat the stormwater prior to discharge to the pond and wetland at the north half of the site. The discharges and pond storage is permitted in MDEGLE permit WRP026826. The detailed construction plans will be reviewed by the Township Engineer and the Soil Erosion Control permit will be reviewed and issued by the Livingston County Drain Commissioner.

E. Impact on surrounding land use: Description of proposed usage and other man-made facilities; how it conforms to existing and potential development patterns. Effects of added lighting, noise or air pollution which could negatively impact adjacent properties.

Phase I of this project will include a commercial drive approach on Golf Club Road, proceeding southerly to the church campus at the southeast corner of the parcel. This development will have little, if any, impact on the northerly 15 acres of the site. The development will require maintaining a significant portion of the existing forested property along the west, east and south property lines. These natural buffers will minimize lighting and noise to existing developed, adjacent properties. The low-density residential development will have no air pollution impact.

F. Impact on public facilities and services: Description of number of residents, employees, patrons, and impact on general services, i.e., schools, police, fire.

The Site Plan for this phased development is for a 506-seat church sanctuary and associated parking, a new commercial driveway, a soccer field, and stormwater forebay in Phase I. Phase II will allow for an expansion of the church with approximately 500 more seats and associated parking, a potential new access drive off Latson Road, and potentially five single-family low-density residential lots.

The church will require connecting to water and sewer along Latson Road. Police and fire protection services, and schools should not be impacted by this church project.

G. Impact on public utilities: description of public utilities serving the project, i.e., water, sanitary sewer, and storm drainage system. Expected flows projected in residential units.

As noted above, the church will need to connect to the public sanitary and MHOG water along Latson Road for Phase I. A watermain easement will be provided to the southern property line for potential future looping with the existing Rolling Ridge development.

The stormwater management plan utilizes enclosed pipe and open swales to transmit water to either a mechanical pretreatment unit (for the primary stormwater management treating the majority of the developed site) and a forebay for the remainder of the storm water runoff on the north end of the site. The forebay and mechanical pretreatment unit filter runoff prior to release into the existing pond and wetlands that are on site.

H. Storage or handling of any hazardous materials: Description of any hazardous materials used, stored, or disposed of on-site.

No storing or handling of any hazardous materials is expected for this church campus.

I. Impact on traffic and pedestrians: Description of traffic volumes to be generated and their effect on the area.

A traffic study has been initiated. It will be prepared under separate cover and submitted to the Township and Livingston County Road Commission once completed.

The Livingston County Road Commission will be required to review and approve the commercial driveway approach at Golf Club Road as it relates to their standards and findings within the traffic study. At this time, it is anticipated that the traffic study may warrant the center left turn lane to be extended through the proposed Golf Club Road approach to serve the left hand turns to the church. The proposed plan currently shows this center turn lane extension. Ultimately, the traffic study will need to be reviewed and considered as part of the approval for the proposed drive approach. The Livingston County Road Commission will require any necessary Golf Club Road improvements be done as part of the approval and permitting.

J. Special provisions: Deed restrictions, protective covenants, etc.

There is a document addressing shared maintenance and access to the existing pond on the subject property between Bible Baptist Church and the adjacent owner to the northwest.

K. Description of all sources:

- Genoa Township Zoning Ordinance
- "Soil Survey of Livingston County Michigan" Soil Conservation Services, USDA

BIBLE BAPTIST CHURCH TRAFFIC IMPACT STUDY

Genoa Township, Michigan

Bergmann

Office: Midwest (Southfield) 29777 Telegraph Road, Suite 1640 Southfield, MI 48034

Phone: 248.663.1289 Email: srusso@bergmannpc.com www.bergmannpc.com

March, 2022

TABLE OF CONTENTS

1.0	Executive Summary	3
2.0	Project Overview	5
3.0	Roadway Data	7
3.1 3.1.1 3.1.2 3.1.3	Existing Road Network Study Intersections Existing Traffic Data Analysis Methodologies	
4.0	Existing Traffic Conditions Analysis	13
4.1	Existing Traffic Conditions	13
5.0	No-Build Traffic Conditions Analysis	13
5.1 5.2	2023 No-Build Traffic Conditions 2026 No-Build Traffic Conditions	
6.0	2023 Phase I Build Conditions Analysis	18
6.1 6.2 6.3 6.4	Site Trip Generation Traffic Assignments Auxiliary Lane Analysis 2023 Phase I Build Traffic Conditions	
7.0	2026 Phase II Build Conditions Analysis	22
7.1 7.2 7.3 7.4 7.5 7.6	Site Trip Generation Traffic Assignments Auxiliary Lane Analysis 2026 Phase II Build Traffic Conditions – Alternative A 2026 Phase II Build Traffic Conditions With Improvements – Alternative A 2026 Phase II Build Traffic Conditions – Alternative B	23 23 23 23 29
8.0	Conclusions and Recommendations	31
Append	dix A – Traffic Count Data	
Append	dix B – Existing Conditions Data	
Append	dix C – No-Build Conditions Data	35
Append	dix D – Phase I Build Conditions Data	
Append	dix E – Phase II Alternative A Build Conditions Data	
Append	dix F – Phase II Alternative B Build Conditions Data	

LIST OF TABLES

Table 1: Roadway Summary	7
Table 2: Existing 2021 Traffic Conditions	13
Table 3: SEMCOG Community Annual Growth Summary	14
Table 4: 2023 No-Build Traffic Conditions	17
Table 5: 2026 No-Build Traffic Conditions	17
Table 6: Phase I ITE Site Trip Generation	18
Table 7: Phase I Sunday Site Trip Generation	18
Table 8: Site Trip Distribution	18
Table 9: 2023 Phase I Build Traffic Conditions - Weekday	19
Table 10: 2023 Phase I Build Traffic Conditions - Sunday	22
Table 11: Phase II ITE Site Trip Generation	22
Table 12: Phase I Sunday Site Trip Generation	23
Table 13: 2026 Phase II Build Traffic Conditions – Alternative A – Weekday	28
Table 14: 2026 Phase II Build Traffic Conditions – Alternative A – Sunday	
Table 15: 2026 Phase II Build Traffic Conditions with Improvements- Alternative A	29
Table 16: 2026 Phase II Build Traffic Conditions – Alternative B – Weekday	
Table 17: 2026 Phase II Build Traffic Conditions – Alternative B – Sunday	

LIST OF FIGURES

Figure 1: Study Area Map	6
Figure 2: Lane Use and Traffic Control	10
Figure 3: 2021 Existing Weekday Traffic Volumes	11
Figure 4: 2021 Existing Sunday Traffic Volumes	12
Figure 5: 2023 No-Build Traffic Volumes	15
Figure 6: 2026 No-Build Traffic Volumes	16
Figure 7: Phase I Site-Generated Traffic Volumes	20
Figure 8: 2023 Phase I Build Traffic Volumes	21
Figure 9: Phase II Site-Generated Traffic Volumes – Alternative A	24
Figure 10: Phase II Site-Generated Traffic Volumes – Alternative B	25
Figure 11: 2026 Phase II Build Traffic Volumes – Alternative A	26
Figure 12: 2026 Phase II Build Traffic Volumes – Alternative B	27

1.0 Executive Summary

This report presents the methodologies, analyses, results, and recommendations of a Traffic Impact Study (TIS) for the proposed Bible Baptist Church in Genoa Township, Livingston County, Michigan. The project site is located in the southwest quadrant of the Latson Road & Golf Cub Road intersection and is currently vacant. The proposed development plans include construction of a new church over two phases. Phase I would construct a 506-seat church with site access provided via a single driveway to Golf Club Road. Phase II would include an approximately 500-seat expansion with potential for a new right-in-right-out driveway to Latson Road.

The purpose of this study is to identify the traffic related impacts, if any, of the proposed project on the adjacent road network. This study was conducted in accordance with accepted traffic engineering practice and guidelines published by the Institute of Transportation Engineers (ITE) and applicable agency standards. Analysis of existing conditions indicate that all approaches and movements at the signalized intersection of Latson Road & Golf Club Road currently operate acceptably at a LOS D or better during the peak hours and will continue to operate acceptably in 2023 and 2026 no-build conditions.

Traffic volumes that are expected to be generated by the development for Phase I and Phase II were forecast based on the rates and equations published by ITE in *Trip Generation* as summarized in the table below. These trips were assigned to the study road network based on existing peak hour traffic patterns, zip code data provided by the Church for existing members, and ITE methodologies. These trips were added to the no-build traffic volumes to calculate the future build traffic volumes with the proposed development for each Phase.

Dhase	ITE	ITE Amount Units		Average		AM Peak Hour		PM Peak Hour		SUN IN Peak		SUN OUT Peak				
Phase	Code	Amount	Units	Daily Traffic	In	Out	Total	In	Out	Total	In	Out	Total	In	Out	Total
Phase I	560	506	Seats	454	21	14	35	23	28	51	121	25	146	24	125	149
Phase II	560	1,000	Seats	913	42	28	70	45	55	100	249	52	301	50	259	309

The Conclusions related to this Traffic Impact Study and relative analyses are as follows:

- 1. At the time of this study, traffic volumes throughout the State of Michigan were impacted by restrictions in place associated with the COVID pandemic. Therefore, historic turning movement count data collected in April, 2019 was utilized to validate baseline traffic volumes for this study.
- 2. All approaches and movements at the study intersection of Latson Road & Golf Club Road currently operate acceptably at a LOS D or better during all peak hours.
- 3. Church time-of-day patterns and traffic volumes indicate approximately 80% of outbound traffic occurs in the first 30-minutes after service ends while approximately 85% of inbound traffic occurs in the 30-minutes prior to the service start time. Therefore, separate inbound and outbound analysis scenarios were completed as there will be minimal overlap between inbound and outbound traffic based on the one-hour separation between services.
- 4. All approaches and movements at the study intersection of Latson Road & Golf Club Road would continue to operate acceptably in the 2023 and 2026 no-build scenarios during all peak hours.
- 5. In accordance with LCRC standards, a left-turn lane and right-turn taper are warranted at the proposed site driveway to Golf Club Road under Phase I build conditions.
- 6. The 2023 Phase I build conditions analysis indicate that the proposed development will not have a significant impact on the adjacent road network. All approaches and movements at the intersection of Latson Road & Golf Club Road will continue to operate at a LOS D or better during all peak hours and minor increases in delay will not be discernable. Additionally, all approaches and movements at the proposed site driveway to Golf Club Road will operate acceptably. Therefore, the proposed development does not require any off-site roadway or traffic control improvements under Phase I build conditions.

- 7. In accordance with LCRC standards, a right-turn lane would be warranted at the proposed site driveway to Golf Club Road under Phase II build conditions.
- 8. The 2026 Phase II Alternative A build conditions analysis indicate the EB through/right-turn movement and WB left-turn movement at the signalized intersection of Latson Road & Golf Club Road would be reduced to a LOS F during the Sunday outbound peak 15-minute period. Additionally, the STOP controlled egress site driveway approach to Golf Club Road will operate at a LOS E or F during both the Sunday inbound and outbound peak 15-minute periods.
- 9. In order to improve traffic operations in the 2026 Phase II Alternative A build conditions, special Sunday timing plans during service times should be provided at the intersection of Latson Road & Golf Club Road.
- 10. In accordance with LCRC standards, a right-turn taper would be warranted at the proposed site driveway to Latson Road under Phase II Alternative B build conditions.
- 11. The 2026 Phase II Alternative B build conditions analysis indicate all approaches and movements at the intersection of Latson Road & Golf Club Road will continue to operate at a LOS D or better during all peak hours. At the proposed site driveways to Golf Club Road and Latson Road all approaches, and movements will operate acceptably at a LOS C or better during the weekday peak hours; however, the STOP controlled egress site driveway approaches to Golf Club Road and Latson Road will operate at a LOS F during the outbound peak 15-minute period.
- 12. Review of network simulations indicate a long vehicle queue on the site driveway approach to Golf Club Road during the outbound peak 15-minute period; however, the duration and length of this queue is reduced as compared to Alternative A. On the site driveway approach to Latson Road, the 95th percentile queue length is calculated to be 152 feet (six vehicles), which is not significant given the intensity of traffic utilizing this approach over a short duration of time. Therefore, the proposed development does not require any off-site roadway or traffic control improvements under Phase II Alternative B build conditions.
- 13. Queues from the signalized intersection of Latson Road & Golf Club Road would not block the site driveways to Golf Club Road or Latson Road under either Phase I or Phase II build conditions. Additionally, there will be no left-turn conflict along Golf Club Road between EB left turns at Latson Road and WB left turns at the proposed site driveway.
- 14. Site access Alternative B is recommended under Phase II build conditions as it would provide improved traffic operations for egress traffic from the site and reduce traffic impacts to the Latson Road & Golf Club Road intersection.

Based on the results of this study, the following improvements are recommended:

2023 Phase I Conditions

1. Construct left-turn lane and right-turn taper at proposed driveway to Golf Club Road.

2026 Phase II Alternative A Conditions

- 1. Construct right-turn lane at proposed driveway to Golf Club Road.
- 2. Install special timing plans at intersection of Latson Road & Golf Club Road associated with Sunday service times.

2026 Phase II Alternative B Conditions

- 1. Construct right-turn lane at proposed driveway to Golf Club Road.
- 2. Construct right-turn taper at proposed driveway to Latson Road.

2.0 Project Overview

This report presents the methodologies, analyses, results, and recommendations of a Traffic Impact Study (TIS) for the proposed Bible Baptist Church in Genoa Township, Livingston County, Michigan. The project site is located in the southwest quadrant of the Latson Road & Golf Cub Road intersection as shown on **Figure 1**, and is currently vacant. The proposed development plans include construction of a new church over two phases. Phase I would construct a 506-seat church with site access provided via a single driveway to Golf Club Road. Phase II would include an approximately 500-seat expansion with potential for a new right-in-right-out driveway to Latson Road.

Proposed Phase I site operations will include Sunday Church services beginning at 9:00 AM and 11:00 AM in addition to children's activities, small groups, youth ministry, and other meetings occurring during the week. Upon completion of Phase II only one Sunday service is planned to be held at 10:30 AM with no changes to weekday activities. No weekday childcare or school is planned as part of the proposed Church. This TIS will address existing and future traffic conditions during the weekday AM (7:00 AM to 9:00 AM) and PM (4:00 PM to 6:00 PM) peak hours as well as the peak hour during Sunday service times.

Latson Road and Golf Club Road are under jurisdiction of the Livingston County Road Commission (LCRC); whereby access permitting will be subject to LCRC review and standards. Additionally, the project is subject to Township review and standards through the site plan approval process. In accordance with Township and LCRC standards a Traffic Impact Study (TIS) has been required for the project.

The purpose of this study is to identify the traffic related impacts, if any, of the proposed project on the adjacent road network. This study therefore includes analysis of the site access points as well as key off-site intersections surrounding the site. Analysis of the site access points will determine appropriate lane configurations as well as traffic control to process site traffic safely and efficiently. Key off-site intersections are analyzed to determine if new site-generated traffic passing through these locations would require improvements to mitigate any impacted traffic operations.

The scope of this study was developed based on Bergmann's knowledge of the study area, understanding of the development program, accepted traffic engineering practice and information published by the Institute of Transportation Engineers (ITE). Additionally, Bergmann solicited input regarding the proposed scope of work from LCRC. The study analyses were completed using Synchro and SimTraffic, Version 11 traffic analysis software and in accordance with the methodologies and practices published by ITE and the applicable requirements of LCRC. This report is intended for use by LCRC and the Township to guide decisions related to development project approvals, access permitting, and identifying future roadway improvement needs.

3.0 Roadway Data

3.1 EXISTING ROAD NETWORK

The study intersections are identified below, and the existing lane use, and traffic control is shown on **Figure 2**. Further details on the study roadways are summarized in **Table 1**.

3.1.1 Study Intersections

- Latson Road & Golf Club Road (signalized); and
- The proposed site access drive(s) (unsignalized).

Roadway Data	Latson Road	Golf Club Road								
Functional Class	Minor Arterial	Major Collector								
Direction	N - S	E - W								
Speed Limit (mph)	55	55								
Jurisdiction	LCRC	LCRC								
Cross Section	2-Lane	2-Lane								
AADT	22,300	7,400								
AM Peak Hour Volume	1,400	555								
PM Peak Hour Volume	1,915	820								

Table 1: Roadway Summary

At the intersection of Latson Road & Golf Club Road, a left-turn lane, through lane, and right-turn lane are provided on the NB and SB Latson Road approaches. On the EB and WB Golf Cub Road approaches a left-turn lane and shared through / right-turn lane are provided. The intersection is traffic signal controlled with permissive-protected left-turn phasing provided for the NB approach. Vehicle actuation is provided for all movements at the intersection. No marked crosswalks or pedestrian signals are provided for any legs of the intersection.

3.1.2 Existing Traffic Data

Historic 24-hour turning movement volumes at the intersection of Latson Road & Golf Club Road were obtained from LCRC for all days between November 11th and December 9th, 2021. During this time period, traffic volumes throughout the State of Michigan were impacted by restrictions in place associated with the COVID pandemic. Therefore, historic turning movement count data collected at the intersection on April 2nd, 2019 was also provided by LCRC. Traffic volume data are included in **Appendix A** and baseline traffic volumes were established as detailed in the subsequent sections.

Peak Hour Factors

All data were aggregated in 15-minute intervals to establish the current peak hour traffic volumes and peak hour factors (PHFs). Weekday PHFs at the study intersections were calculated by approach based on the requirements of MDOT's *Electronic Traffic Control Device Guidelines*. However, given the strong peaking characteristics of churches associated with service start and end times, PHFs were calculated by movement during the Sunday analysis periods. In order to determine the PHFs at the proposed site driveways, traffic volumes collected at three existing churches in southeast Michigan were reviewed and indicate an average PHF of 0.45 and 0.40 for entering and exiting traffic, respectively. Therefore, these PHFs were utilized for entering and exiting traffic movements at the site driveways for the Sunday analysis periods. For the weekday analysis periods, a PHF of 0.92 was utilized as traffic associated with weekday uses is less concentrated and more spread-out throughout the hour. For the Sunday build analysis scenarios, PHFs at the intersection of Latson Road & Golf Club Road were recalculated for movements to

and from the site by conservatively assuming the peak 15-minutes associated with Church traffic would coincide with the existing peak 15-minutes at the intersection.

Heavy Vehicle Percentage

Commercial truck percentages from the April, 2019 turning movement count were utilized during the weekday AM and PM peak hour and calculated by approach. For the Sunday analysis periods a default commercial truck percentage of 2% was utilized as truck data was not available.

Weekday Volumes

Weekday (Monday – Friday) AM and PM peak hour volumes were calculated for all days between November 11th and December 9th. This data was reviewed and any days which did not represent normal travel volumes and conditions were removed. The remaining days were averaged together to establish 2021 peak hour volumes. The 2021 peak hour volume was than compared to the pre-COVID 2019 turning movement count to determine if any volume adjustments were necessary. This comparison indicates similar overall traffic volumes at the intersection; however, some of the turning movement patterns have changed, particularly along the NB approach during the PM peak hour.

Commuting patterns through this area favor traffic traveling to the south and east during the morning peak hour and traffic traveling to the north and west during the afternoon peak hour. In mid to late 2019 improvements were made at the M-59 & Eager Road intersection which included widening of the Eager Road approaches to provide left turn lanes and installation of a traffic signal. This improved operations and safety for left turns at the intersection and made the shorter route of Golf Club Road to Eager Road more viable for traffic traveling from Latson Road south of Golf Club Road wishing to travel west on M-59. As such the shift in traffic patterns along the NB approach during the PM peak hour is likely attributed to these improvements.

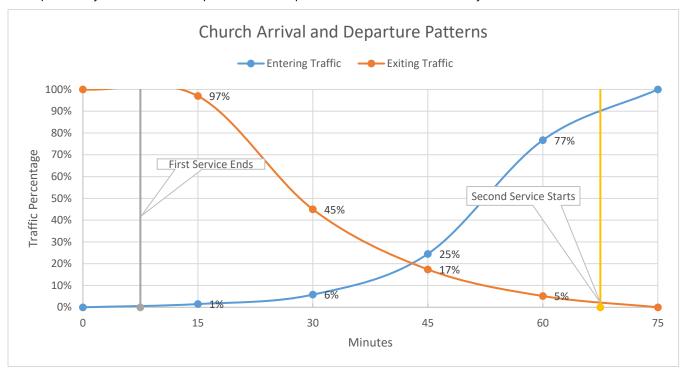
Therefore, baseline traffic volumes for this study were established by taking the higher of the two volumes between the 2021 average and April, 2019 count for all turning movements during the peak hours with the exception of the NB approach during the PM peak hour. For this approach, the higher 2019 total approach volume was utilized and applied to the 2021 turning movement proportions along the approach. The resulting baseline weekday peak hour volumes are summarized on **Figure 3**.

Sunday Volumes

For Phase I, the peak hour will occur between services from 10:00 AM to 11:00 AM when vehicles from the first service are leaving and vehicles for the second service are arriving. For Phase II, the peak hour will occur after the lone service from 11:30 AM to 12:30 PM. Therefore, Sunday traffic volume data between 9:45 AM and 11:45 AM was utilized to establish Phase I peak hour volumes and traffic volume data between 11:30 AM and 1:00 PM was utilized to establish Phase II peak hour volumes and account for any potential shifts of service times in the future.

Peak hour volumes for each phase were calculated for all Sundays between November 11th and December 9th. Data was reviewed and any days which did not represent normal travel volumes and conditions were removed. Baseline traffic volumes were then conservatively established by taking the highest volume amongst all Sundays for each turning movement at the intersection. The resulting baseline Sunday peak hour volumes are summarized on **Figure 4**.

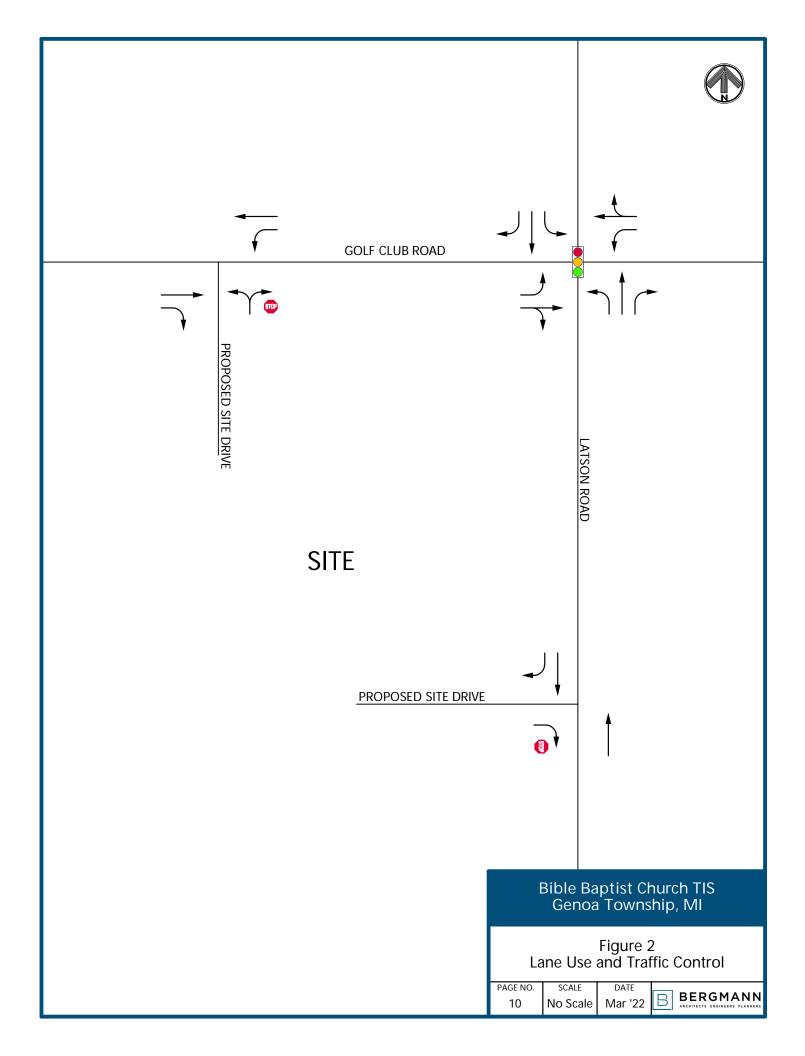
3.1.3 Analysis Methodologies

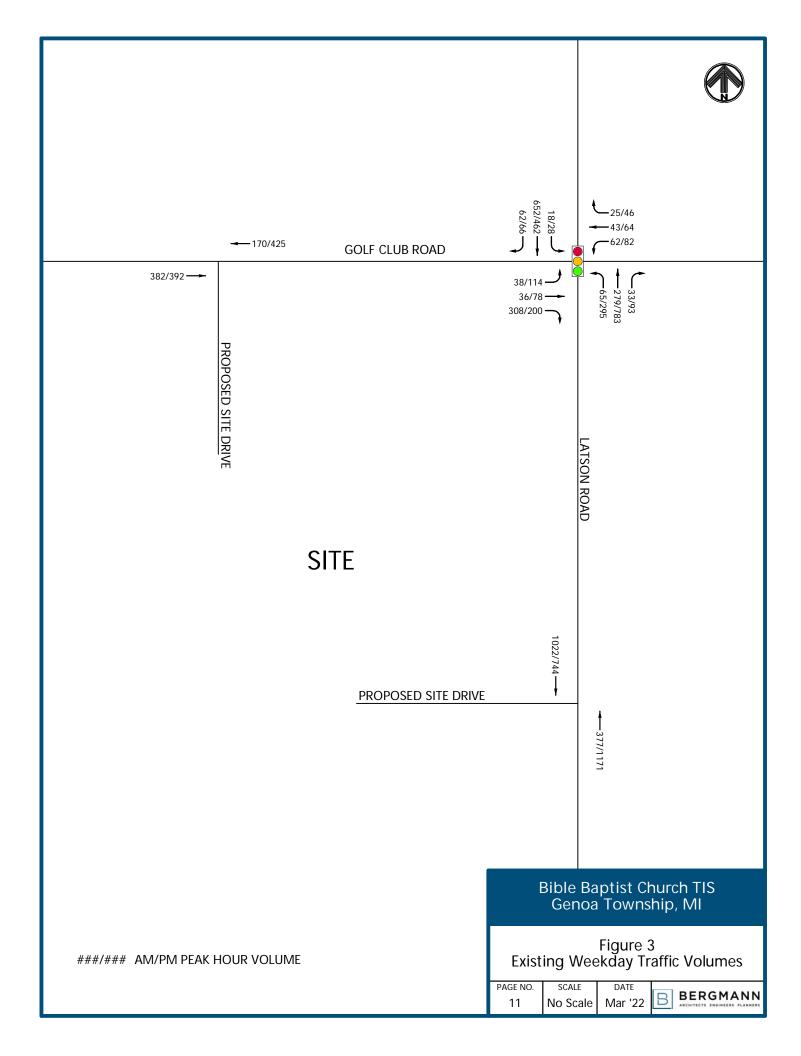

The performance of the study intersections was evaluated through a qualitative measure of operating conditions called Levels of Service (LOS). Six LOS are defined with letter designations from A to F with LOS A representing minimal delay, and LOS F indicating failing conditions. Typically, LOS D is considered acceptable in suburban/urban areas.

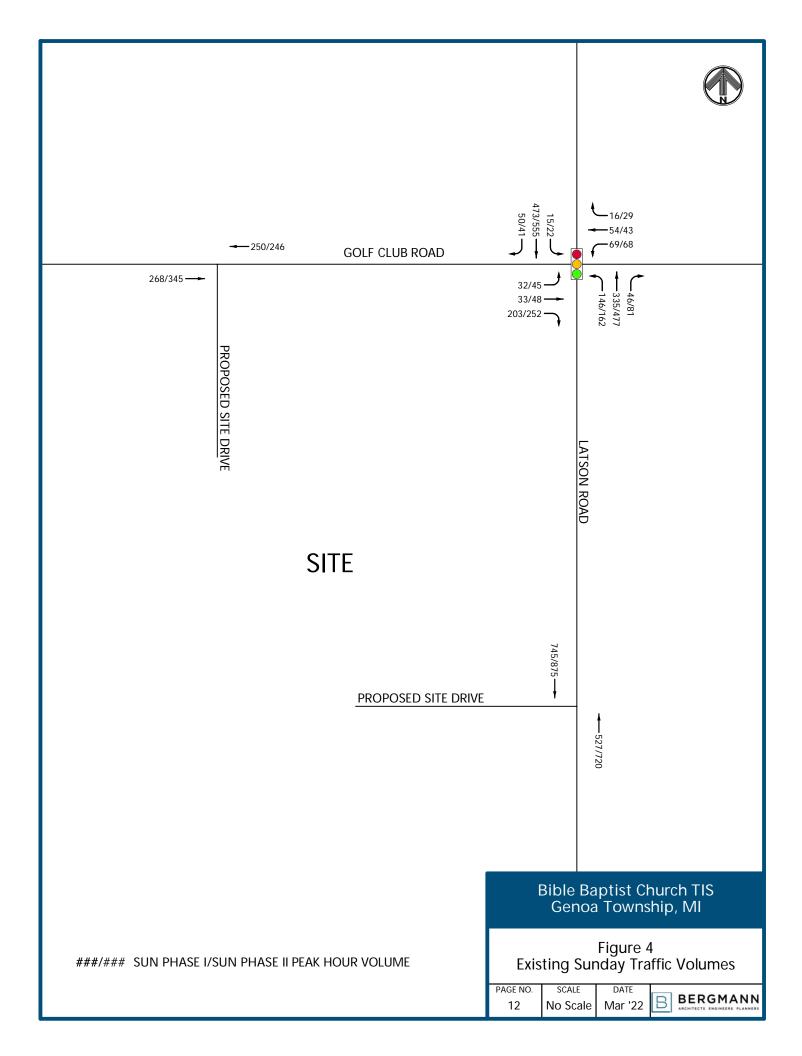
The LOS measurement for both signalized and unsignalized intersections is average control delay, which is quantified in terms of seconds of delay per vehicle. Control delay includes deceleration delay, stopped delay, queue move-up delay, and acceleration delay. The LOS criteria for unsignalized and signalized intersections taken from the HCM are included in **Appendix B**.

The operational analyses of all study intersections were performed using Synchro, Version 11 traffic analysis software. Synchro 11 is a software package used for modeling, optimizing, and simulating traffic systems. The LOS and delay calculations are based on the procedures and methodologies outlined in the Transportation Research Board's *Highway Capacity Manual*, 6th Edition (HCM6) which sets forth nationally accepted standards regarding traffic operations and capacity analysis.

In accordance with the HCM6, the capacity analysis is based on an evaluation of the peak 15-min period during the hour. Church time-of-day patterns and traffic volumes from three churches in southeast Michigan are summarized in **Chart 1** and indicate approximately 80% of outbound traffic occurs in the first 30-minutes after service has ended while approximately 85% of inbound traffic occurs in the 30-minutes prior to the service start time. Based on the proposed one-hour separation between the end of the first service and beginning of the second service, there will be minimal overlap between entering and exiting traffic volumes in the peak 15-minutes associated with each service. As such, analysis of a single time period with all forecast inbound and outbound traffic and application of PHFs previously identified would provide an overprediction of demand and delay.




Chart 1: Church Arrival and Departure Patterns


In order to analyze two different 15-minute intervals, a separate inbound and outbound analysis scenario was completed for Phase I. For each scenario, only 20% of traffic in the non-peak direction was assumed to overlap with the peak direction being analyzed. This same approach was utilized for the Phase II analysis and accounts for a second Phase II service in the future should one ever be added.

Queue length calculations were conducted using SimTraffic, Version 11 software. The existing conditions SimTraffic models were calibrated in accordance with the procedures outlined in the MDOT *Electronic Traffic Control Device Guidelines*.

4.0 Existing Traffic Conditions Analysis

4.1 EXISTING TRAFFIC CONDITIONS

Existing peak hour vehicle delays and LOS were calculated at the study intersections based on the existing lane configurations and traffic control shown on **Figure 2**, the existing traffic volumes shown on **Figure 3**, and the methodologies presented in the HCM6.

The HCM6 methodology conservatively assumes a right-turn-on-red flow rate of zero vehicles in cases where it is not explicitly known from field data. As the EB Golf Club Road approach has a high-volume of right-turning vehicles and low volume of through vehicles, field reviews were conducted to determine a right-turn-on-red flow rate. During field reviews, between two and three vehicles per cycle were observed turning right on red for this approach during the AM and SUN peak hour and between one and two vehicles per cycle were observed turning right on red during the PM peak hour. Therefore, based on the field observations and the intersection cycle length currently in operation during the peak periods, a right-turn-on-red flow rate of 75 vehicles per hour was utilized for the AM and SUN peak hour and 50 vehicles per hour was utilized during the PM peak hour.

Simulations of the study network were also observed using SimTraffic, in order to identify potential issues related to vehicle queuing, traffic flow between intersections, and the overall study network. The results of the analysis of existing conditions are presented in **Appendix B**, summarized in **Table 2** and described in further detail below.

	Control	Approach	Movement	Existing Conditions									
Intersection				AM Peak		PM Peak		SUN Phase I		SUN Phase II			
				Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS		
			Left	23.0	С	26.4	С	20.9	С	22.6	С		
		EB	Thru/Right	30.2	С	26.4	С	21.1	С	23.5	С		
	Signal	WB	Left	34.6	С	32.6	С	25.2	С	29.0	С		
			Thru/Right	21.2	С	21.3	С	19.1	В	20.3	С		
		NB	Left	16.0	В	22.4	С	12.8	В	15.1	В		
Latson Road & Golf Club Road			Thru	9.1	А	14.5	В	7.4	А	9.2	А		
			Right	7.7	А	8.0	А	6.0	А	7.0	А		
		SB	Left	13.3	В	24.7	С	12.6	В	14.1	В		
			Thru	24.7	С	25.8	С	19.0	С	21.6	С		
			Right	13.6	В	17.8	В	12.9	В	14.0	В		
		Overall		21.9	С	20.8	С	15.5	В	17.1	В		

Table 2: Existing 2021 Traffic Conditions

The results of the existing conditions analysis indicate that all approaches and movements at the intersection of Latson Road & Golf Club Road currently operate acceptably at a LOS C or better during the peak hours. Observation of peak hour simulations also indicate acceptable traffic operations during the peak hours with vehicles processed during each signal cycle and significant vehicle queues are not observed. Furthermore, SimTraffic vehicle delays for the EB shared through/right-turn lane are calculated to be 20.6, 27.0, 13.1, and 17.9 seconds per vehicle during the AM, PM, SUN Phase I, and SUN Phase II peak hours, respectively, validating the field reviews and right-turn-on-red flow rates utilized for this approach.

5.0 No-Build Traffic Conditions Analysis

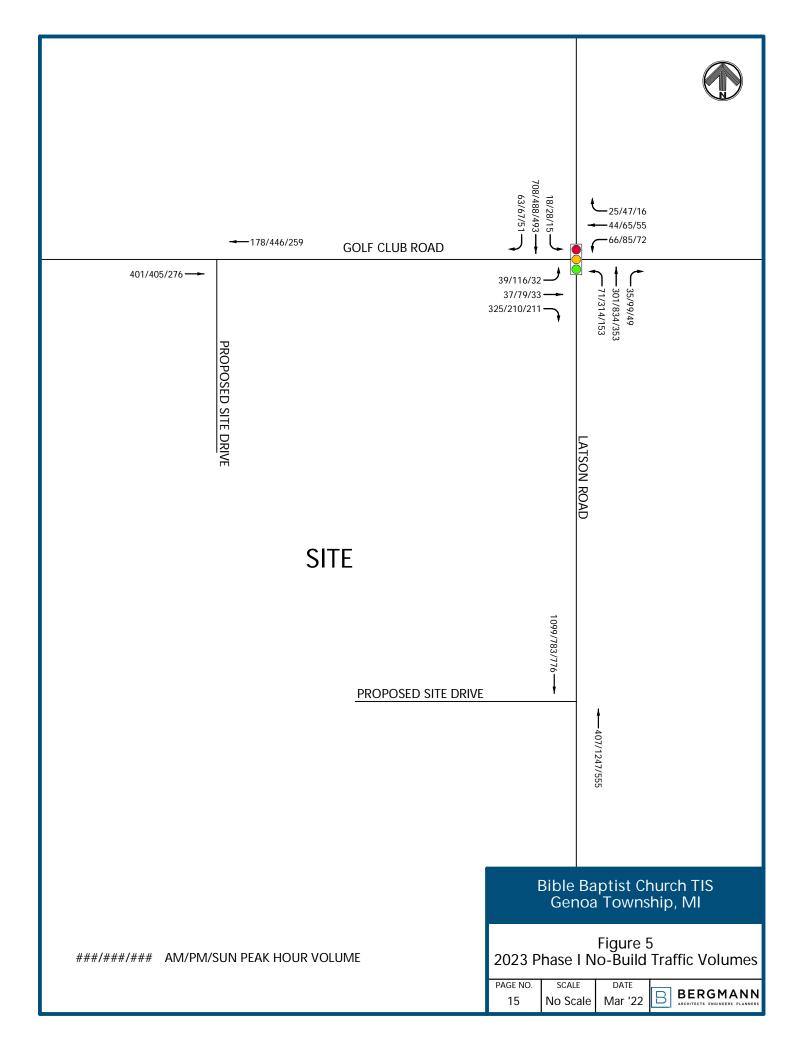
Traffic impact studies typically include an evaluation of traffic operations in the future as they would be without the proposed development. This no-build condition serves to identify any mitigation that may be required, regardless of the project, and as a baseline for comparison of future buildout conditions. This scenario is comprised of existing traffic conditions, plus ambient traffic growth, plus traffic from approved developments in the study area that have

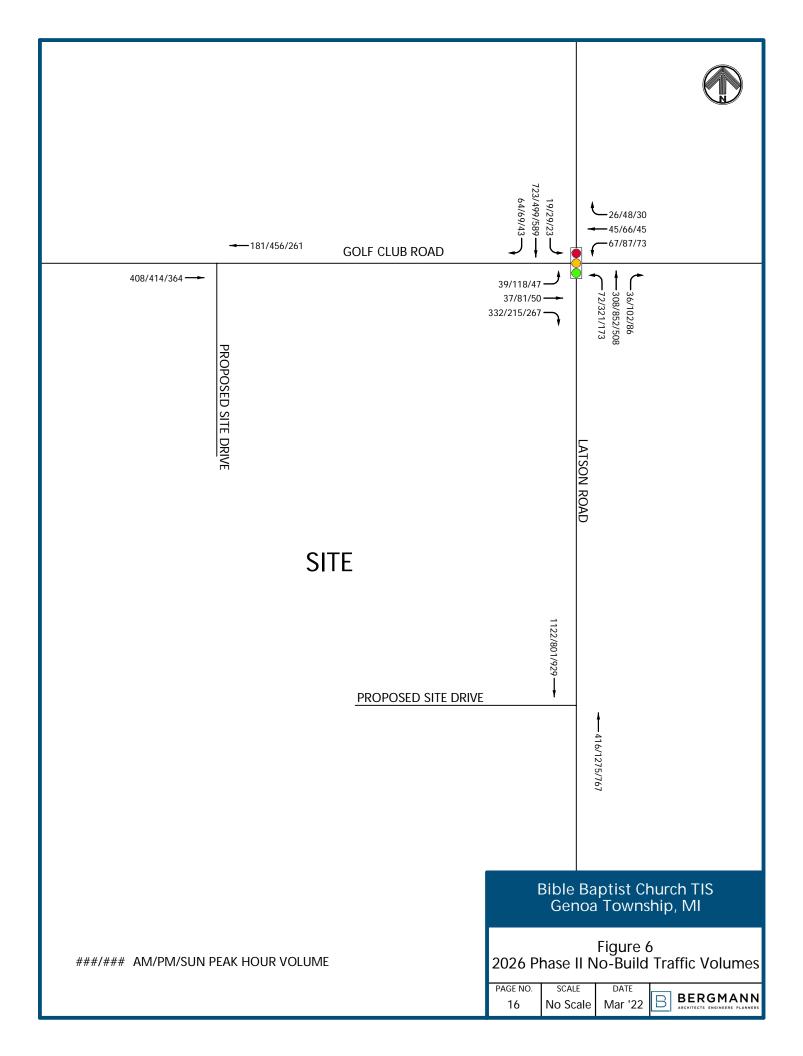
yet to be constructed. At the time of the 2021 traffic counts the following developments were identified within the study area and immediate vicinity that have yet to be constructed or were currently under construction:

- 1. Versa Mixed-Use Development
- 2. Westbury Phase II Residential Development

The vehicle trips that would be generated by the background developments were assigned to the study intersections based on the respective traffic study completed for each development. Where a traffic study was not completed for the development or the traffic study did not include the same intersections as this study, the number of vehicle trips was forecast based on data published by ITE in *Trip Generation*, *11th Edition* and assigned to the study road network based on existing traffic patterns.

In addition to background developments, an ambient growth factor is applied to existing traffic volumes to account for future projects in the study area and population increases, as well as growth in regular traffic volumes due to development projects outside the study area. The recent construction of the I-96 & Latson Road interchange has resulted in significant changes in traffic patterns throughout the study area. As a result, historical traffic volumes do not provide an accurate representation of traffic growth in the area. Therefore, publicly available data from the Southeast Michigan Council of Governments (SEMCOG), including population and employment forecasts for Genoa Township were referenced.


Community	Measure	2015	2045	Growth			
Canaa Tawashin	Employment	12,072	13,534	0.38%			
Genoa Township	Population	20,815	32,907	1.54%			
Howell	Employment	10,365	11,527	0.35%			
Howell	Population	9,489	11,256	0.57%			
Drighton	Employment	10,791	12,425	0.47%			
Brighton	Population	17,791	21,883	0.69%			
Duinhten Teurshin	Employment	10,772	12,986	0.63%			
Brighton Township	Population	7,444	12,127	1.64%			
AVERAGE							


Table 3: SEMCOG Community Annual Growth Summary

The SEMCOG data indicates annual population and employment growths ranging from 0.35% to 1.64% between 2015 and 2045 as shown in **Table 3**. Therefore, an ambient background growth rate of 0.75% per year was utilized for this study. The ambient growth rate and trips from the background developments were applied to the existing 2021 traffic volumes to forecast the future 2023 and 2026 no-build traffic volumes *without the proposed development*. The resultant 2023 and 2026 no-build traffic volumes are summarized on Figure 5 and Figure 6, respectively.

5.1 2023 NO-BUILD TRAFFIC CONDITIONS

2023 no-build peak hour vehicle delays and LOS were calculated at the study intersections based on the existing lane configurations and traffic control shown on **Figure 2**, the 2023 no-build traffic volumes shown on **Figure 5**, and the methodologies presented in the HCM6. The results of the analysis of 2023 no-build conditions are presented in **Appendix C**, summarized in **Table 4** and described in further detail below.

					AM	Peak			PM	Peak			SUN	Peak	
Intersection	Control	Approach	Movement	Exist	ing	No-B	uild	Exist	ing	No-B	uild	Exist	ing	No-B	uild
				Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
		EB	Left	23.0	С	25.2	С	26.4	С	28.1	С	20.9	С	21.4	С
		ED	Thru/Right	30.2	С	38.5	D	26.4	С	29.4	С	21.1	С	21.7	С
		WB	Left	34.6	С	41.6	D	32.6	С	35.8	D	25.2	С	26.2	С
		VVD	Thru/Right	21.2	С	23.1	С	21.3	С	22.5	С	19.1	В	19.6	В
Latson Road &			Left	16.0	В	17.0	В	22.4	С	26.9	С	12.8	В	13.6	В
Golf Club	Signal	NB	Thru	9.1	А	8.8	А	14.5	В	15.7	В	7.4	А	7.8	Α
Road			Right	7.7	А	7.3	А	8.0	А	7.9	А	6.0	А	6.2	Α
NUdu		SB	Left	13.3	В	12.7	В	24.7	С	27.2	С	12.6	В	13.0	В
			Thru	24.7	С	27.0	С	25.8	С	26.5	С	19.0	С	20.0	С
			Right	13.6	В	13.0	В	17.8	В	17.9	В	12.9	В	13.2	В
		Ov	erall	21.9	С	24.8	С	20.8	С	22.5	С	15.5	В	16.2	В

Table 4: 2023 No-Build Traffic Conditions

The results of the 2023 no-build conditions analysis indicate that all approaches and movements at the intersection of Latson Road & Golf Club Road will continue to operate acceptably at a LOS D or better during the peak hours. Observation of network simulations also indicate acceptable traffic operations during the peak hours with vehicles processed during each signal cycle and significant vehicle queues are not observed.

5.2 2026 NO-BUILD TRAFFIC CONDITIONS

2026 no-build peak hour vehicle delays and LOS were calculated at the study intersections based on the existing lane configurations and traffic control shown on **Figure 2**, the 2026 no-build traffic volumes shown on **Figure 6**, and the methodologies presented in the HCM6. The results of the analysis of 2026 no-build conditions are presented in **Appendix C**, summarized in **Table 5** and described in further detail below.

					AM	Peak			PM I	Peak			SUN	Peak	
Intersection	Control	Approach	Movement	Exist	ing	No-B	uild	Exist	ing	No-B	uild	Exist	ing	No-B	uild
				Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
		EB	Left	23.0	С	25.8	С	26.4	С	29.0	С	22.6	С	24.1	С
		ED	Thru/Right	30.2	С	42.4	D	26.4	С	31.4	С	23.5	С	25.7	С
		WB	Left	34.6	С	45.6	D	32.6	С	38.5	D	29.0	С	32.0	С
Latera		VVD	Thru/Right	21.2	С	23.7	С	21.3	С	23.1	С	20.3	С	21.6	С
Latson			Left	16.0	В	17.3	В	22.4	С	29.1	С	15.1	В	17.0	В
Road & Golf Club	Signal	NB	Thru	9.1	А	8.7	А	14.5	В	16.1	В	9.2	А	10.0	В
Road		I NB	Right	7.7	А	7.2	А	8.0	А	7.8	А	7.0	А	7.5	А
RUdu		SB	Left	13.3	В	12.6	В	24.7	С	28.1	С	14.1	В	14.8	В
			Thru	24.7	С	27.6	С	25.8	С	26.6	С	21.6	С	23.4	С
			Right	13.6	В	12.9	В	17.8	В	17.8	В	14.0	В	14.7	В
		Ov	erall	21.9	С	26.0	С	20.8	С	23.4	С	17.1	В	18.6	В

Table 5: 2026 No-Build Traffic Conditions

The results of the 2026 no-build conditions analysis indicate that all approaches and movements at the intersection of Latson Road & Golf Club Road will continue to operate acceptably at a LOS D or better during the peak hours. Observation of network simulations also indicate acceptable traffic operations during the peak hours with vehicles processed during each signal cycle and significant vehicle queues are not observed.

6.0 2023 Phase I Build Conditions Analysis

Phase I of the development plan is proposed to include a 506-seat church with site access provided via a single driveway to Golf Club Road.

6.1 SITE TRIP GENERATION

The number of AM, PM, and SUN peak hour vehicle trips that would be generated by the proposed development was forecast based on data published by ITE in *Trip Generation*, *11th Edition*. The ITE land use that most closely matches the operations of the proposed development is *Land Use #560, Church*. The ITE trip generation forecast for the Sunday peak hour indicates an almost equal number of entering and exiting trips. This indicates that the data was likely collected at churches with multiple service times where the peak hour occurs between services. The ITE trip generation forecast for Phase I is summarized in **Table 6**.

	ITE	Amount	Linite	Average	AM	Peak	Hour	PM	Peak	Hour	SUN	I Peak	Hour
Land Use Code A		Amount	Units	Daily Traffic	In	Out	Total	In	Out	Total	In	Out	Total
Church	560	506	Seats	454	21	14	35	23	28	51	121	125	246

Table 6: Phase I ITE Site Trip Generation

As Phase I is proposed to include two services, this data provides a good forecast of Phase I operations; however, as previously discussed, there will be minimal overlap between entering and exiting traffic volumes in the peak 15-minutes based on the one-hour separation between the end of the first service and beginning of the second service. Analysis of a single time period with all forecast inbound and outbound traffic and application of PHFs previously identified would provide an overprediction of demand and delay. Therefore, separate inbound and outbound analysis scenarios were analyzed. For each scenario, only 20% of traffic in the non-peak direction was assumed to overlap with the peak direction being analyzed. The resulting Phase I site trip generation forecast utilized for each Sunday analysis scenario is summarized in **Table 7**.

Table 7: Phase I Sunday Site Trip Generation

Land Use	ITE	Amount	Units	SUN I	NBOUND) Peak	SUN O	UTBOUN	D PEAK
Land Use	Code	Amount	Units	In	Out	Total	In	Out	Total
Church	560	506	Seats	121	25	146	24	125	149

6.2 TRAFFIC ASSIGNMENTS

The vehicle trips that would be generated by the proposed development were assigned to the study road network based on existing peak hour traffic patterns, zip code data provided by the Church for existing members, and ITE methodologies. These methods indicate that new trips will return to their direction of origin. The zip code data was reviewed in combination with available routes to/from the proposed site. The resulting trip distribution utilized in this study is summarized in **Table 8**.

Table 8: Site Trip Distribution

To/From	Via	AM/PM/SUN
North	Latson Road	15%
South	Latson Road	30%
East	Golf Club Road	5%
West	Golf Club Road	50%
	TOTAL	100%

As only one driveway is proposed for Phase I, all trips were assigned to enter and exit the site via Golf Club Road. The site-generated vehicle trips were assigned to the study network as shown on **Figure 7**. These trips were added

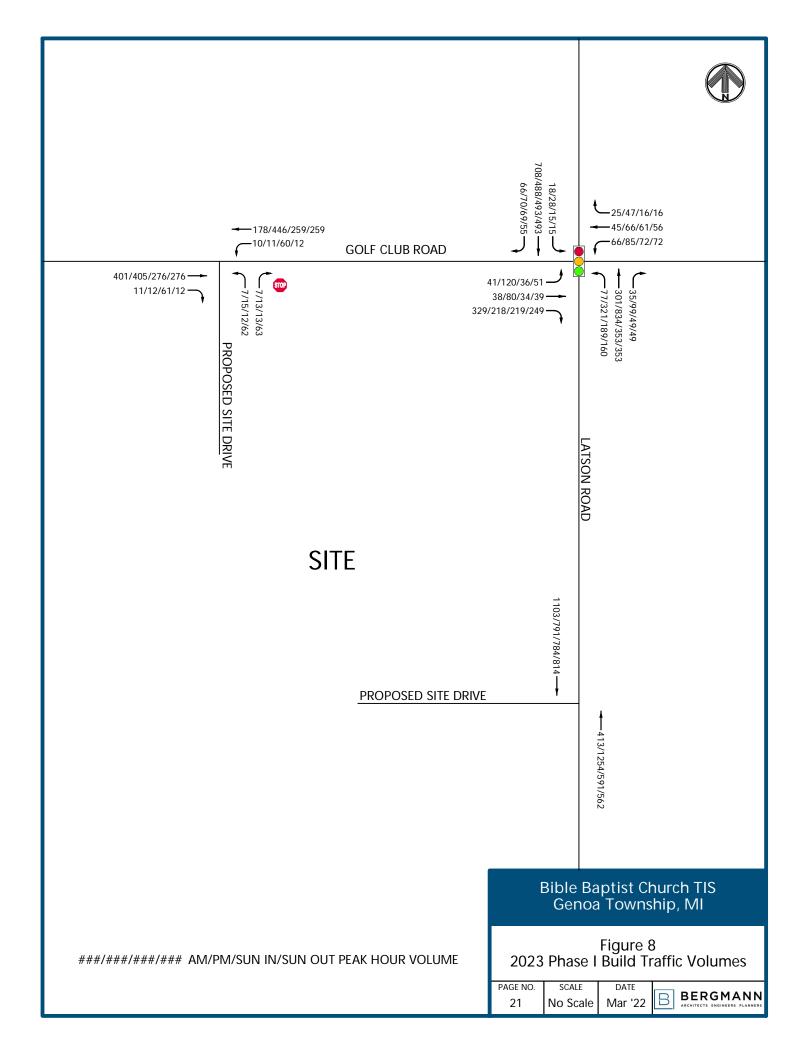
to the 2023 no-build traffic volumes shown on **Figure 5** to calculate the future build traffic volumes shown on **Figure 8**.

6.3 AUXILIARY LANE ANALYSIS

In order to determine the configuration of the proposed site driveway with Golf Club Road, warrants for right and left-turn lanes were evaluated in accordance with the LCRC *Specifications and Administrative Rules Regulating Driveways, Road Approaches, Banners and Parades on and Over Highways.* LCRC does not publish warranting criteria for right-turn lanes, so the MDOT right-turn lane warrant outlined in Section 1.1.4 of the *Geometric Design Guidance* was utilized. Evaluation of the forecast site traffic volume assignments versus warranting criteria indicate a left turn lane and right-turn taper only is warranted at the proposed site driveway to Golf Club Road under Phase I. Due to the required length of storage and taper, the left turn lane for the site driveway should tie in full width to the existing left turn lane at the Latson Road intersection. The applicable warrant evaluations are included in **Appendix D**.

6.4 2023 PHASE I BUILD TRAFFIC CONDITIONS

Future 2023 phase I build peak hour vehicle delays and LOS *with the proposed development* were calculated based on existing lane configurations and traffic control shown on Figure 2, 2023 build traffic volumes shown on Figure 8, and HCM methodologies. SimTraffic simulations were also utilized to evaluate traffic flow and vehicle queues throughout the study network. The 2023 phase I build conditions results are included in Appendix D and summarized in Table 9 and Table 10.


The results of the build conditions analysis indicate that the proposed development will not have a significant impact on the adjacent road network. All approaches and movements at the signalized intersection of Latson Road & Golf Club Road will continue to operate at a LOS D or better during all peak hour analysis scenarios and minor increases in delay will not be discernable. Additionally, all approaches and movements at the proposed site driveway to Golf Club Road will operate acceptably at a LOS C or better.

					AM	Peak			PM	Peak	
Intersection	Control	Approach	Movement	No-B	uild	Phase I	Build	No-B	uild	Phase I	Build
				Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
		EB	Left	25.2	С	25.7	С	28.1	С	28.6	С
		ED	Thru/Right	38.5	D	40.1	D	29.4	С	31.0	С
		WB	Left	41.6	D	43.0	D	35.8	D	37.6	D
		VVD	Thru/Right	23.1	С	23.2	С	22.5	С	22.7	С
Latson Road			Left	17.0	В	17.2	В	26.9	С	28.2	С
& Golf Club	Signal	NB	Thru	8.8	А	8.8	А	15.7	В	15.6	В
Road			Right	7.3	А	7.3	А	7.9	А	7.9	Α
			Left	12.7	В	12.8	В	27.2	С	27.1	С
		SB	Thru	27.0	С	27.1	С	26.5	С	26.6	С
			Right	13.0	В	13.1	В	17.9	В	18.0	В
		Ov	erall	24.8	С	25.2	С	22.5	С	23.0	С
Calf Club		EB	Thru/Right	Fre	e	Fre	е	Fre	e	Fre	e
Golf Club	STOP		Left			8.4	Α			8.6	Α
Road & Site Drive	(Minor)	WB	Thru	Fre	e	Fre	e	Fre	e	Fre	e
Dilve		NB	Left/Right			13.0	В			17.0	С

Table 9: 2023 Phase I Build Traffic Conditions - Weekday

						SUN	I Peak		
Intersection	Control	Approach	Movement	No-B	uild	Build INB	OUND	Build OUT	BOUND
				Delay	LOS	Delay	LOS	Delay	LOS
		FD	Left	21.4	С	24.9	С	24.1	С
		EB	Thru/Right	21.7	С	24.7	С	26.6	С
		WB	Left	26.2	С	30.5	С	32.5	C
		VVD	Thru/Right	19.6	В	22.1	С	20.6	С
			Left	13.6	В	19.5	В	18.2	В
Latson Road & Golf Club Road	Signal	NB	Thru	7.8	А	8.2	А	9.9	А
			Right	6.2	Α	6.6	А	8.0	А
			Left	13.0	В	15.2	В	16.3	В
		SB	Thru	20.0	С	23.3	С	25.0	С
			Right	13.2	В	16.2	В	17.0	В
		C	verall	16.2	В	19.0	В	20.4	С
		EB	Thru/Right	Fre	е	Free	9	Free	9
Golf Club Road & Site	STOP	WB	Left			8.8	А	8.1	А
Drive	(Minor)	VVD	Thru	Fre	e	Free	e	Free	e
		NB	Left/Right			16.2	С	23.4	С

Table 10: 2023 Phase I Build Traffic Conditions - Sunday

Review of peak hour simulations also indicate future build traffic operations which are similar to no-build conditions with significant vehicle queues not observed. Vehicle queue lengths from the signalized intersection of Latson Road & Golf Club Road were also calculated and evaluated with respect to the proposed driveway located approximately 650 feet west of Latson Road. The results of this evaluation indicate a 95th percentile queue length of 237 feet or less during all peak hours for the EB approach which would not extend back past the proposed site driveway. Additionally, the EB left-turn movement from Golf Club Road onto Latson Road and WB left-turn movement into the proposed site driveway would experience a combined 95th percentile queue length of 161 feet or less during the peak hours which would not result in any left-turn conflict. Therefore, the proposed development does not require any off-site roadway or traffic control improvements under Phase I build conditions.

7.0 2026 Phase II Build Conditions Analysis

Phase II of the development plan is proposed to expand the church to 1,000 seats. The following two site access alternatives were analyzed for Phase II:

- 1. Alternative A: Site access provided via a single driveway to Golf Club Road.
- 2. Alternative B: Site access provided via one driveway to Golf Club Road and a right-in-right-out driveway to Latson Road.

7.1 SITE TRIP GENERATION

The number of AM, PM, and SUN peak hour vehicle trips that would be generated by the proposed development was forecast utilizing the methodologies and assumptions discussed for Phase I. The ITE trip generation forecast for Phase II is summarized in **Table 11**.

Land	ITE	Amount	Unite	Average	AN	l Peak	Hour	PM	Peak	Hour	SUN	I Peak	Hour
Use	Code	Amount	Units	Daily Traffic	In	Out	Total	In	Out	Total	In	Out	Total
Church	560	1,000	Seats	913	42	28	70	45	55	100	249	259	508

Table 11: Phase II ITE Site Trip Generation

Phase II is planned to only include one service at this time; however, a second service may be added at some point in the future. Therefore, separate inbound and outbound analysis scenarios were once again analyzed for Phase II. For each scenario, only 20% of traffic in the non-peak direction was assumed to overlap with the peak direction being analyzed. The resulting Phase II site trip generation forecast utilized for each Sunday analysis scenario is summarized in **Table 12**.

	ITE	Amount	Unite	SUN	IN Peak	Hour	SUN (OUT Peak	Hour
Land Use	Code	Amount	Units	In	Out	Total	In	Out	Total
Church	560	1,000	Seats	249	52	301	50	259	309

Table 12: Phase I Sunday Site Trip Generation

7.2 TRAFFIC ASSIGNMENTS

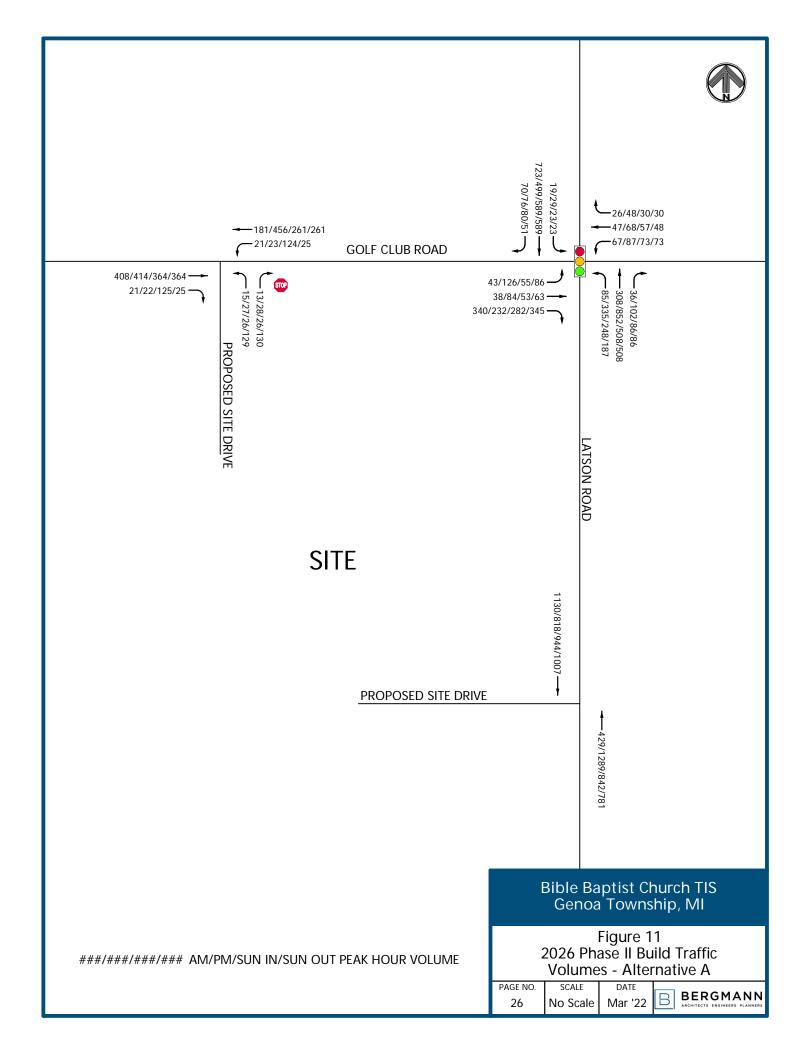
The vehicle trips that would be generated by the proposed development were assigned to the study road network based on the trip distribution methodologies and assumptions developed for Phase I and summarized in **Table 8**. For Phase II Alternative A, all trips were assigned to enter and exit the site via Golf Club Road. For Phase II Alternative B, all egress traffic to the south on Latson Road was assigned to utilize the RIRO driveway. All remaining outbound traffic was assigned to the Golf Club Road driveway. For inbound, all traffic from the north was assigned to the RIRO driveway while all traffic from the south, east, and west was assigned to the Golf Club Road driveway. The site-generated vehicle trips were assigned to the study network as shown on **Figure 9** and **Figure 10**. These trips were added to the 2026 no-build traffic volumes shown on **Figure 6** to calculate the future Phase II build traffic volumes shown on **Figure 11** and **Figure 12**.

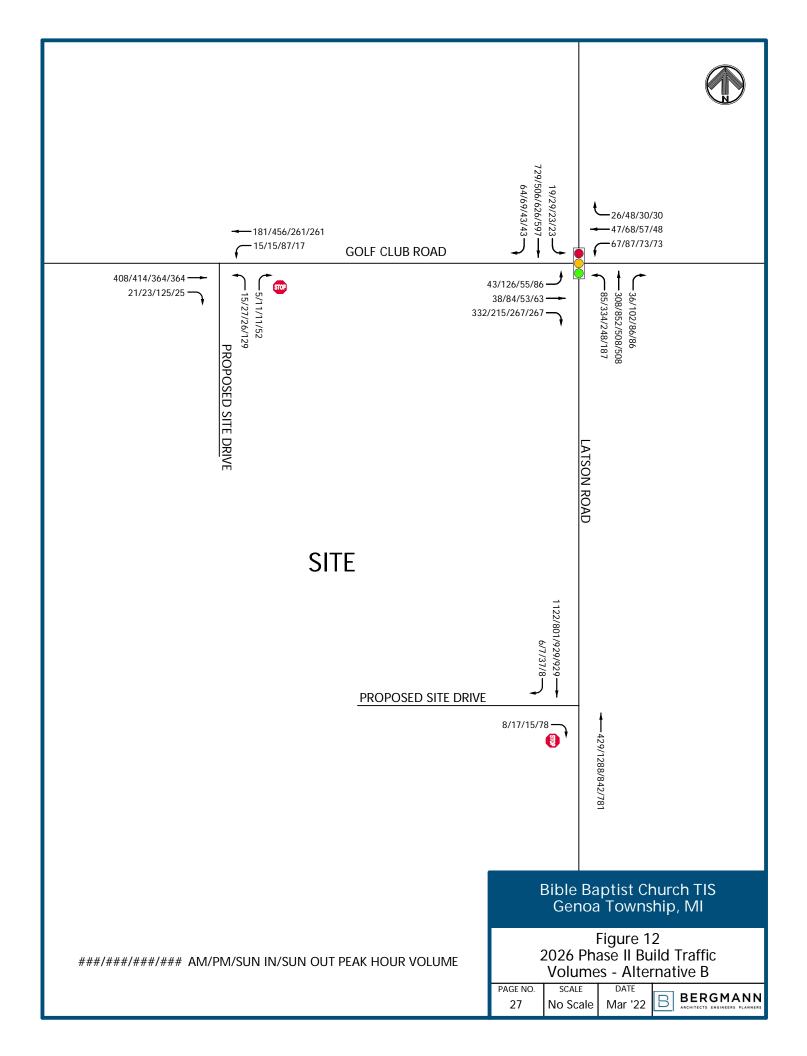
7.3 AUXILIARY LANE ANALYSIS

In order to determine the configuration of the proposed site driveway(s) with Golf Club Road and Latson Road, warrants for right-turn lanes were evaluated for each Phase II site access alternative in accordance with the LCRC *Specifications and Administrative Rules Regulating Driveways, Road Approaches, Banners and Parades on and Over Highways.* Evaluation of the forecast site traffic volume assignments versus warranting criteria indicate a right turn lane would be warranted at the Golf Club Road driveway under both site access alternatives. At the Latson Road driveway, a right-turn taper only would be warranted under Alternative B. The applicable warrant evaluations are included in **Appendix E**.

7.4 2026 PHASE II BUILD TRAFFIC CONDITIONS – ALTERNATIVE A

Future 2026 Phase II Alternative A build peak hour vehicle delays and LOS *with the proposed development* were calculated based on existing lane configurations and traffic control shown on Figure 2, 2026 build traffic volumes shown on Figure 11, and HCM methodologies. SimTraffic simulations were also utilized to evaluate traffic flow and vehicle queues throughout the study network. The 2026 Phase II Alternative A build conditions results are included in Appendix E and summarized in Table 13 and Table 14.


The results of the build conditions analysis indicate that the proposed development will not have a significant impact on the adjacent road network during the weekday peak hours. All approaches and movements at the signalized intersection of Latson Road & Golf Club Road will continue to operate at a LOS D or better and minor increases in delay will not be discernable. Additionally, all approaches and movements at the proposed site driveway to Golf Club Road will operate acceptably at a LOS C or better during the weekday peak hours.


During the Sunday peak hours, the EB through/right-turn movement and WB left-turn movement at the signalized intersection of Latson Road & Golf Club Road would be reduced to a LOS F during the outbound peak 15-minute period. Additionally, the STOP controlled egress site driveway approach to Golf Club Road will operate at a LOS E or F during both the inbound and outbound peak 15-minute periods.

					AM P	eak			PM P	eak	
Intersection	Control	Approach	Movement	No-Bi	uild	Build – A	ALT A	No-Bi	uild	Build – A	ALT A
				Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
		EB	Left	25.8	С	26.2	С	29.0	С	29.9	С
		ED	Thru/Right	42.4	D	46.4	D	31.4	С	35.6	D
		WB	Left	45.6	D	50.0	D	38.5	D	43.9	D
		VVD	Thru/Right	23.7	С	23.9	С	23.1	С	23.5	С
Latson			Left	17.3	В	17.8	В	29.1	С	31.8	С
Road & Golf Club	Signal	NB	Thru	8.7	А	8.7	А	16.1	В	16.0	В
Road			Right	7.2	А	7.2	А	7.8	А	7.7	А
Road			Left	12.6	В	12.7	В	28.1	С	27.8	С
		SB	Thru	27.6	С	27.8	С	26.6	С	26.8	С
			Right	12.9	В	13.0	В	17.8	В	18.1	В
		Ov	erall	26.0	С	27.0	С	23.4	С	24.6	С
		EB	Thru/Right	Free	е	Fre	e	Free	9	Fre	e
Golf Club	STOP	WB	Left			8.5	А			8.7	А
Road & Site Drive	(Minor)	VVD	Thru	Free	е	Fre	e	Free	9	Fre	e
Dive		NB	Left/Right			13.8	В			18.8	С

Table 13: 2026 Phase II Build Traffic Conditions – Alternative A – Weekday

Table 14: 2026 Phase II Build Traffic Conditions – Alternative A – Sunday

						SUN Phas	se II – Al	LT A		
Intersection	Control	Approach	Movement	No-B	uild	Build INB	OUND	Build OUT	BOUND	
				Delay	LOS	Delay	LOS	Delay	LOS	
		EB	Left	24.1	С	29.6	С	27.9	С	
		ED	Thru/Right	25.7	С	34.7	С	81.4	F	
		WB	Left	32.0	С	41.5	D	134.7	F	
		VVD	Thru/Right	21.6	С	25.5	С	22.4	С	
			Left	17.0	В	40.2	D	19.7	В	
Latson Road & Golf Club Road	Signal	NB	Thru	10.0	В	9.9	А	10.6	В	
			Right	7.5	А	7.4	А	7.9	А	
			Left	14.8	В	17.2	В	15.9	В	
		SB	Thru	23.4	С	28.3	С	25.6	С	
			Right	14.7	В	18.1	В	16.0	В	
		C	Overall	18.6	В	25.4	С	35.1	D	
		EB	Thru/Right	Fre	e	Free	9	Free	9	
Golf Club Road & Site	STOP	WB	Left			10.6	В	8.4	А	
Drive	(Minor)	VVD	Thru	Fre	e	Free	e	Free	Free	
		NB	Left/Right			48.3	E	284.6	F	

Review of the peak hour simulations indicate future build traffic operations which are similar to no-build conditions during the weekday peak hours with vehicle queues processed during each signal cycle and significant vehicle queues not observed. During the Sunday peak hour, brief periods of moderate vehicle queues are observed at the signalized intersection of Latson Road & Golf Club Road for movements to and from the site; however, these queues dissipate quickly and are not present throughout the duration of the peak hour. Long delays and queues are also observed for the STOP controlled egress site driveway approach during the outbound peak 15-minute period which is typical of Churches. This queue also dissipates quickly and is not present throughout the duration of the peak hour.

Vehicle queue lengths from the signalized intersection of Latson Road & Golf Club Road were also calculated and evaluated with respect to the proposed driveway. The results of this evaluation indicate a 95th percentile queue length of 334 feet or less during all peak hours for the EB approach which would not extend back past the proposed site driveway. Additionally, the EB left-turn movement from Golf Club Road onto Latson Road and WB left-turn movement into the proposed site driveway would experience a combined 95th percentile queue length of 189 feet or less during the peak hours which would not result in any left turn conflict.

7.5 2026 PHASE II BUILD TRAFFIC CONDITIONS WITH IMPROVEMENTS – ALTERNATIVE A

In order to improve traffic operations in the Phase II Alternative A build conditions, signal cycle length and timing adjustments were investigated at the intersection of Latson Road & Golf Club Road. The results of this analysis indicate that with optimized timings at the intersection, all approaches and movements would operate acceptably at a LOS D or better during the outbound peak 15-minutes as shown in **Table 15**. Therefore, special Sunday timing plans during service times may be necessary with Phase II build conditions Alternative A and should be coordinated with LCRC.

					SUI	V Phase I	I – Alte	rnative A	
Intersection	Control	Approach	Movement	No-B	uild	Build	Out	Build Ou	t IMP
				Delay	LOS	Delay	LOS	Delay	LOS
		ГР	Left	24.1	С	27.9	С	26.1	С
		EB	Thru/Right	25.7	С	81.4	F	33.1	С
			Left	32.0	С	134.7	F	44.6	D
		WB	Thru/Right	21.6	С	22.4	С	21.1	С
			Left	17.0	В	19.7	В	52.1	D
Latson Road & Golf Club Road	Signal	NB	Thru	10.0	В	10.6	В	16.9	В
			Right	7.5	А	7.9	А	12.6	В
			Left	14.8	В	15.9	В	24.0	С
		SB	Thru	23.4	С	25.6	С	44.3	D
			Right	14.7	В	16.0	В	21.3	С
		0	verall	18.6	В	35.1	D	32.1	С

Table 15: 2026 Phase II Build Traffic Conditions with Improvements- Alternative A

7.6 2026 PHASE II BUILD TRAFFIC CONDITIONS – ALTERNATIVE B

Future 2026 Phase II Alternative B build peak hour vehicle delays and LOS *with the proposed development* were calculated based on existing lane configurations and traffic control shown on Figure 2, 2026 build traffic volumes shown on Figure 12, and HCM methodologies. SimTraffic simulations were also utilized to evaluate traffic flow and vehicle queues throughout the study network. The 2026 Phase II Alternative B build conditions results are included in Appendix F and summarized in Table 16 and Table 17.

The results of the Phase II Alternative B build conditions analysis indicate that the proposed development would not have a significant impact on the adjacent road network during the weekday or Sunday peak hours. All approaches and movements at the signalized intersection of Latson Road & Golf Club Road would continue to operate at a LOS D or better. At the proposed site driveways to Golf Club Road and Latson Road all approaches, and movements will operate acceptably at a LOS C or better during the weekday peak hours; however, the STOP controlled egress site driveway approaches to Golf Club Road and Latson Road will operate at a LOS F during the outbound peak 15-minute period.

					AM P	eak			PM P	eak	
Intersection	Control	Approach	Movement	No-Bı	uild	Build – A	ALT B	No-Bı	uild	Build – /	ALT B
				Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
		EB	Left	25.8	С	26.4	С	29.0	С	30.2	С
		ED	Thru/Right	42.4	D	44.1	D	31.4	С	32.8	С
		WB	Left	45.6	D	47.7	D	38.5	D	40.4	D
		VVD	Thru/Right	23.7	С	24.1	С	23.1	С	23.7	С
Latson			Left	17.3	В	17.9	В	29.1	С	32.3	С
Road & Golf Club	Signal	NB	Thru	8.7	А	8.6	А	16.1	В	15.9	В
Road			Right	7.2	А	7.1	А	7.8	А	7.7	А
Noud			Left	12.6	В	12.6	В	28.1	С	27.7	С
		SB	Thru	27.6	С	28.1	С	26.6	С	26.8	С
			Right	12.9	В	12.9	В	17.8	В	17.9	В
		Ov	erall	26.0	С	26.6	С	23.4	С	24.2	С
		EB	Thru/Right	Free	Э	Free	e	Free	e	Free	e
Golf Club Road & Site	STOP	WB	Left			8.5	А			8.7	А
Drive	(Minor)	VVD	Thru	Free	9	Fre	e	Free	9	Free	e
Diffe		NB	Left/Right			14.2	В			20.0	С
Latson	STOP	EB	Right			23.2	С			17.1	С
Road & Site	(Minor)	NB	Thru	Free	9	Fre	e	Free	9	Free	e
Drive		SB	Thru/Right	Free	5	Free	e	Free	9	Free	5

Table 16: 2026 Phase II Build Traffic Conditions – Alternative B – Weekday

Table 17: 2026 Phase II Build Traffic Conditions – Alternative B – Sunday

						SUN Pha	se II – A	LT B	
Intersection	Control	Approach	Movement	No-B	uild	Build INB	OUND	Build OUT	BOUND
				Delay	LOS	Delay	LOS	Delay	LOS
		EB	Left	24.1	С	32.9	С	29.8	С
		ED	Thru/Right	25.7	С	35.9	D	30.9	С
		WB	Left	32.0	С	43.6	D	37.2	D
		VVD	Thru/Right	21.6	С	28.3	С	23.9	С
Lataan Daad & Calf			Left	17.0	В	53.8	D	21.3	С
Latson Road & Golf Club Road	Signal	NB	Thru	10.0	В	9.3	А	10.2	В
			Right	7.5	А	6.9	А	7.6	А
			Left	14.8	В	16.4	В	15.3	В
		SB	Thru	23.4	С	32.1	С	27.2	С
			Right	14.7	В	16.2	В	15.2	В
		C	verall	18.6	В	29.0	С	22.0	С
		EB	Thru/Right	Fre	e	Fre	e	Free	9
Golf Club Road & Site	STOP	WB	Left			10.0	В	8.4	А
Drive	(Minor)	VVD	Thru	Fre	e	Fre	e	Free	9
Drive		NB	Left/Right			31.9	D	136.9	F
Lataan Daad & Cita	CTOD	EB	Right			19.5	С	54.2	F
Latson Road & Site Drive	STOP (Minor)	NB	Thru	Fre	e	Fre	e	Free	9
Dive		SB	Thru/Right	Fre	e	Fre	e	Free	9

Review of the peak hour simulations indicate future build traffic operations which are similar to no-build conditions during the weekday peak hours with vehicle queues processed during each signal cycle and significant vehicle queues not observed. During the Sunday peak hour, brief periods of moderate vehicle queues are observed at the

В

signalized intersection of Latson Road & Golf Club Road for the NB left-turn movement; however, this queue dissipates quickly and is not present throughout the duration of the peak hour. On the site driveway approach to Golf Club Road, a long vehicle queue is observed during the outbound peak 15-minute period; however, the duration and length of this queue is reduced as compared to Alternative A. On the site driveway approach to Latson Road, the 95th percentile queue length is calculated to be 152 feet (six vehicles), which is not significant given the intensity of traffic utilizing this approach over a short duration of time.

Vehicle queue lengths from the signalized intersection of Latson Road & Golf Club Road were also calculated and evaluated with respect to the proposed driveways. The results of this evaluation indicate a 95th percentile queue length of 357 feet and 477 feet or less during all peak hours for the EB and NB approaches, respectively, which would not extend back past the proposed site driveways. Additionally, the EB left-turn movement from Golf Club Road onto Latson Road and WB left-turn movement into the proposed site driveway would experience a combined 95th percentile queue length of 221 feet or less during the peak hours which would be adequately stored in the center lane for left turns. Therefore, the proposed development does not require any off-site roadway or traffic control improvements under Phase II Alternative B build conditions.

Based on the results of the two site access alternatives, Alternative B is recommended for Phase II of the development. This alternative would provide improved traffic operations for egress traffic from the site and reduce traffic impacts to the Latson Road & Golf Club Road intersection.

8.0 Conclusions and Recommendations

The Conclusions related to this Traffic Impact Study and relative analyses are as follows:

- 1. At the time of this study, traffic volumes throughout the State of Michigan were impacted by restrictions in place associated with the COVID pandemic. Therefore, historic turning movement count data collected in April, 2019 was utilized to validate baseline traffic volumes for this study.
- 2. All approaches and movements at the study intersection of Latson Road & Golf Club Road currently operate acceptably at a LOS D or better during all peak hours.
- 3. Church time-of-day patterns and traffic volumes indicate approximately 80% of outbound traffic occurs in the first 30-minutes after service ends while approximately 85% of inbound traffic occurs in the 30-minutes prior to the service start time. Therefore, separate inbound and outbound analysis scenarios were completed as there will be minimal overlap between inbound and outbound traffic based on the one-hour separation between services.
- 4. All approaches and movements at the study intersection of Latson Road & Golf Club Road would continue to operate acceptably in the 2023 and 2026 no-build scenarios during all peak hours.
- 5. In accordance with LCRC standards, a left-turn lane and right-turn taper are warranted at the proposed site driveway to Golf Club Road under Phase I build conditions.
- 6. The 2023 Phase I build conditions analysis indicate that the proposed development will not have a significant impact on the adjacent road network. All approaches and movements at the intersection of Latson Road & Golf Club Road will continue to operate at a LOS D or better during all peak hours and minor increases in delay will not be discernable. Additionally, all approaches and movements at the proposed site driveway to Golf Club Road will operate acceptably. Therefore, the proposed development does not require any off-site roadway or traffic control improvements under Phase I build conditions.
- 7. In accordance with LCRC standards, a right-turn lane would be warranted at the proposed site driveway to Golf Club Road under Phase II build conditions.

- 8. The 2026 Phase II Alternative A build conditions analysis indicate the EB through/right-turn movement and WB left-turn movement at the signalized intersection of Latson Road & Golf Club Road would be reduced to a LOS F during the Sunday outbound peak 15-minute period. Additionally, the STOP controlled egress site driveway approach to Golf Club Road will operate at a LOS E or F during both the Sunday inbound and outbound peak 15-minute periods.
- 9. In order to improve traffic operations in the 2026 Phase II Alternative A build conditions, special Sunday timing plans during service times should be provided at the intersection of Latson Road & Golf Club Road.
- 10. In accordance with LCRC standards, a right-turn taper would be warranted at the proposed site driveway to Latson Road under Phase II Alternative B build conditions.
- 11. The 2026 Phase II Alternative B build conditions analysis indicate all approaches and movements at the intersection of Latson Road & Golf Club Road will continue to operate at a LOS D or better during all peak hours. At the proposed site driveways to Golf Club Road and Latson Road all approaches, and movements will operate acceptably at a LOS C or better during the weekday peak hours; however, the STOP controlled egress site driveway approaches to Golf Club Road and Latson Road will operate at a LOS F during the outbound peak 15-minute period.
- 12. Review of network simulations indicate a long vehicle queue on the site driveway approach to Golf Club Road during the outbound peak 15-minute period; however, the duration and length of this queue is reduced as compared to Alternative A. On the site driveway approach to Latson Road, the 95th percentile queue length is calculated to be 152 feet (six vehicles), which is not significant given the intensity of traffic utilizing this approach over a short duration of time. Therefore, the proposed development does not require any off-site roadway or traffic control improvements under Phase II Alternative B build conditions.
- 13. Queues from the signalized intersection of Latson Road & Golf Club Road would not block the site driveways to Golf Club Road or Latson Road under either Phase I or Phase II build conditions. Additionally, there will be no left-turn conflict along Golf Club Road between EB left turns at Latson Road and WB left turns at the proposed site driveway.
- 14. Site access Alternative B is recommended under Phase II build conditions as it would provide improved traffic operations for egress traffic from the site and reduce traffic impacts to the Latson Road & Golf Club Road intersection.

Based on the results of this study, the following improvements are recommended:

2023 Phase I Conditions

1. Construct left-turn lane and right-turn taper at proposed driveway to Golf Club Road.

2026 Phase II Alternative A Conditions

- 1. Construct right-turn lane at proposed driveway to Golf Club Road.
- 2. Install special timing plans at intersection of Latson Road & Golf Club Road associated with Sunday service times.

2026 Phase II Alternative B Conditions

- 1. Construct right-turn lane at proposed driveway to Golf Club Road.
- 2. Construct right-turn taper at proposed driveway to Latson Road.

Appendix A – Traffic Count Data

Location: Latson Road & Golf Club Drive City/Twp: Genoa Township, MI Date: 04/02/2019 (Tuesday) Weather:

Collected By: LCRC

	Eastbound Golf Club Dr			f Club	Dr	Nor	thbou	nd Lat	son R	oad	We	estbou	nd Go	lf Club	Dr	Sou	Ithbou	nd Lat	son R	oad
Start Time	Left	Thru	Right	Total	Peds	Left	Thru	Right	Total	Peds	Left	Thru	Right	Total	Peds	Left	Thru	Right	Total	Peds
6:30 AM	10	2		78	0	4	17	0	21	0	20	6	6	32	0	2	160	7	169	0
6:45 AM	9	1	84	94	0	5	37	2	44	0	21	17	5	43	0	2	144	6	152	0
7:00 AM	5	2	74	81	0	11	30	2	43	0	27	15	5	47	0	4	144	12	160	0
7:15 AM	6	7	59	72	0	14	44	1	59	0	18	9	3	30	0	2	182	12	196	0
7:30 AM	5	5	99	109	0	8	68	3	79	0	9	6	6	21	0	3	164	9	176	0
7:45 AM	6	5	71	82	0	16	76	4	96	0	20	12	3	35	0	4	171	16	191	0
8:00 AM	4	9	70	83	0	6	62	6	74	0	11	9	3	23	0	1	152	12	165	0
8:15 AM	6	7	68	81	0	10	73	5	88	0	21	8	3	32	0	2	165	11	178	0
8:30 AM	5	3	53	61	0	10	69	5	84	0	19	6	8	33	0	3	179	12	194	0
8:45 AM	6	2	54	62	0	17	73	7	97	0	18	7	3	28	0	1	177	10	188	0
AM Peak	21	26	308	355	0	40	279	18	337	0	61	35	15	111	0	10	652	48	710	0
PHF			0.81					0.88					0.79					0.93		
4:00 PM	18	13	28	59	0	44	238	16	298	0	25	9	6	40	0	6	117	5	128	0
4:15 PM	22	7	41	70	0	42	181	9	232	0	20	10	13	43	0	1	106	7	114	0
4:30 PM	27	13	35	75	0	28	199	20	247	0	11	12	9	32	0	2	85	6	93	0
4:45 PM	12	13	36	61	0	33	228	16	277	0	27	15	11	53	0	9	108	12	129	0
5:00 PM	40	12	33	85	0	24	213	14	251	0	31	11	9	51	0	7	102	15	124	0
5:15 PM	32	23	23	78	0	42	264	16	322	0	14	16	14	44	0	5	134	8	147	0
5:30 PM	30	30	51	111	0	48	257	16	321	0	10	11	12	33	0	3	109	11	123	0
5:45 PM	20	9	25	54	0	55	218	20	293	0	15	15	9	39	0	3	102	13	118	0
PM Peak	114	78	143	335	0	147	962		1171	0	82	53		181	0	24	453	46	523	0
PHF			0.75					0.91					0.85					0.89		

					AI	M PEAK (7:0	00 AM to 9:	00 AM)						
			SB			WB			NB			EB		
Day	Date	R	Т	L	R	Т	L	R	Т	L	R	Т	L	Total
Thursday	11/11/2021	65	580	17	15	39	71	36	292	33	278	40	47	1513
Friday	11/12/2021	62	574	32	25	52	61	40	247	71	245	39	37	1485
Saturday	11/13/2021	27	335	16	5	27	48	24	172	41	143	15	31	884
Sunday	11/14/2021	26	309	8	11	20	39	25	144	63	138	25	25	833
Monday	11/15/2021	53	528	23	25	39	54	25	249	59	261	32	35	1383
Tuesday	11/16/2021	62	611	18	25	44	59	28	180	78	280	35	44	1464
Wednesday	11/17/2021	62	528	24	31	40	62	31	251	68	279	39	34	1449
Thursday	11/18/2021	63	634	17	26	36	63	33	250	61	294	44	39	1560
Friday	11/19/2021	50	569	17	30	40	76	33	252	78	301	35	38	1519
Saturday	11/20/2021	31	323	5	7	27	41	20	133	40	159	12	14	812
Sunday	11/21/2021	22	329	3	13	34	57	33	173	72	153	20	17	926
Monday	11/22/2021	56	598	15	23	44	63	38	264	70	273	36	38	1518
Tuesday	11/23/2021	56	599	17	23	49	65	40	218	55	298	35	36	1491
Wednesday	11/24/2021	48	540	8	8	45	60	34	188	86	273	30	24	1344
Thursday	11/25/2021	13	134	2	7	5	24	16	99	41	57	7	15	420
Friday	11/26/2021	23	344	6	10	23	41	23	159	47	166	15	21	878
Saturday	11/27/2021	23	244	7	5	19	37	18	111	39	120	17	11	651
Sunday	11/28/2021	16	259	4	8	18	30	16	136	65	101	16	17	686
Monday	11/29/2021	59	570	16	26	32	49	18	236	74	266	27	32	1405
Tuesday	11/30/2021	67	534	18	26	48	48	27	247	71	271	30	33	1420
Wednesday	12/1/2021	58	546	16	25	48	59	19	170	86	287	35	54	1403
Thursday	12/2/2021	87	426	25	34	43	48	22	221	67	286	43	44	1346
Friday	12/3/2021	47	590	15	21	39	56	31	273	80	247	37	32	1468
Saturday	12/4/2021	36	236	8	7	27	35	19	93	48	138	21	22	690
Sunday	12/5/2021	39	264	7	11	26	43	27	157	56	178	12	19	839
Monday	12/6/2021	61	632	16	30	44	51	30	263	52	280	28	29	1516
Tuesday	12/7/2021	68	600	17	22	43	60	25	221	70	288	31	35	1480
Wednesday	12/8/2021	48	545	15	16	34	55	16	220	73	262	31	34	1349
Thursday	12/9/2021	74	592	12	27	45	54	29	234	77	303	37	41	1525
Ave	rage	62	592	18	25	43	62	33	243	65	284	36	38	1502
Ave		4.1%	39.4%	1.2%	1.7%	2.9%	4.1%	2.2%	16.2%	4.3%	18.9%	2.4%	2.5%	100.0%
4/2/	2019	48	652	10	15	35	61	18	279	40	308	26	21	1513
4/2/		3.2%	43.1%	0.7%	1.0%	2.3%	4.0%	1.2%	18.4%	2.6%	20.4%	1.7%	1.4%	100.0%
2022 P	ASELINE	62	652	18	25	43	62	33	279	65	308	36	38	1622
2022 8/		3.8%	40.2%	1.1%	1.6%	2.7%	3.8%	2.0%	17.2%	4.0%	19.0%	2.2%	2.3%	100.0%

					F	PM PEAK (4	:00 PM to 6	:00 PM)						
			SB			WB			NB			EB		
Day	Date	R	Т	L	R	Т	L	R	Т	L	R	Т	L	Total
Thursday	11/11/2021	47	541	24	25	57	76	90	713	247	197	65	63	2145
Friday	11/12/2021	69	492	22	41	73	73	89	778	253	198	63	98	2249
Saturday	11/13/2021	51	410	13	25	47	56	63	466	177	157	39	56	1560
Sunday	11/14/2021	41	429	15	16	33	48	39	335	146	159	19	30	1310
Monday	11/15/2021	44	407	22	35	64	65	92	736	303	192	63	76	2099
Tuesday	11/16/2021	63	455	22	36	58	69	90	755	291	172	63	87	2161
Wednesday	11/17/2021	61	450	27	41	53	69	86	756	274	196	61	59	2133
Thursday	11/18/2021	45	451	26	32	61	78	101	685	280	201	61	92	2113
Friday	11/19/2021	58	511	27	34	73	94	84	781	264	217	58	84	2285
Saturday	11/20/2021	40	410	21	26	37	63	77	505	189	198	44	76	1686
Sunday	11/21/2021	40	336	12	15	54	69	42	315	139	187	33	22	1264
Monday	11/22/2021	54	412	69	46	63	86	103	852	292	199	70	87	2333
Tuesday	11/23/2021	77	491	30	54	60	79	103	779	296	194	68	83	2314
Wednesday	11/24/2021	94	468	19	35	54	91	101	732	289	214	49	85	2231
Thursday	11/25/2021	17	221	14	23	22	37	34	247	87	81	19	19	821
Friday	11/26/2021	71	477	11	16	59	49	78	449	188	169	36	42	1645
Saturday	11/27/2021	33	331	9	16	29	56	49	390	118	135	24	49	1239
Sunday	11/28/2021	35	402	15	12	25	62	42	308	117	199	22	28	1267
Monday	11/29/2021	67	356	19	31	49	71	89	514	264	177	60	72	1769
Tuesday	11/30/2021	53	358	21	30	58	54	82	573	259	199	66	62	1815
Wednesday	12/1/2021	69	388	25	43	63	75	73	533	268	169	63	71	1840
Thursday	12/2/2021	70	394	33	38	69	61	79	736	299	194	47	96	2116
Friday	12/3/2021	72	501	21	34	59	74	73	754	271	217	46	82	2204
Saturday	12/4/2021	63	402	18	26	58	65	84	480	178	191	32	57	1654
Sunday	12/5/2021	50	473	11	16	31	57	46	302	107	203	26	32	1354
Monday	12/6/2021	59	479	28	20	62	60	88	740	261	172	53	66	2088
Tuesday	12/7/2021	61	454	21	33	62	71	82	756	299	186	65	75	2165
Wednesday	12/8/2021	68	388	27	28	67	64	77	746	298	207	61	86	2117
Thursday	12/9/2021	85	457	25	33	82	69	97	704	307	207	52	73	2191
Ave	age	66	462	28	36	64	75	90	752	283	200	59	82	2197
	uge	3.0%	21.0%	1.3%	1.7%	2.9%	3.4%	4.1%	34.2%	12.9%	9.1%	2.7%	3.7%	100.0%
4/2/2	2019	46	453	24	46	53	82	62	962	147	143	78	114	2210
-72/1		2.1%	20.5%	1.1%	2.1%	2.4%	3.7%	2.8%	43.5%	6.7%	6.5%	3.5%	5.2%	100.0%
2022 BA	SELINE	66	462	28	46	64	82	93	783	295	200	78	114	2310
2022 07		2.9%	20.0%	1.2%	2.0%	2.8%	3.5%	4.0%	33.9%	12.7%	8.7%	3.4%	4.9%	100.0%

	PHASE I (9:45 AM to 11:45 AM)													
			SB			WB			NB			EB		
Day	Date	R	Т	L	R	Т	L	R	Т	L	R	Т	L	Total
Sunday	11/14/2021	41	429	15	16	33	48	39	335	146	159	19	30	1310
Sunday	11/21/2021	40	336	12	15	54	69	42	315	139	187	33	22	1264
Sunday	11/28/2021	35	402	15	12	25	62	42	308	117	199	22	28	1267
Sunday	12/5/2021	50	473	11	16	31	57	46	302	107	203	26	32	1354
A., .	*2.50	42	410	13	15	36	59	42	315	127	187	25	28	1299
Ave	rage	3.2%	31.6%	1.0%	1.1%	2.8%	4.5%	3.3%	24.3%	9.8%	14.4%	1.9%	2.2%	100.0%
2022 B/		50	473	15	16	54	69	46	335	146	203	33	32	1472
2022 8/	ASELINE	3.4%	32.1%	1.0%	1.1%	3.7%	4.7%	3.1%	22.8%	9.9%	13.8%	2.2%	2.2%	100.0%

	PHASE II (11:30 AM to 1:00 PM)													
			SB			WB			NB			EB		
Day	Date	R	Т	L	R	Т	L	R	Т	L	R	Т	L	Total
Sunday	11/14/2021	35	547	22	29	34	68	81	442	148	252	34	45	1737
Sunday	11/21/2021	36	555	16	22	43	60	70	477	146	247	48	36	1756
Sunday	11/28/2021	23	489	21	17	24	62	59	384	159	221	38	37	1534
Sunday	12/5/2021	41	527	22	16	33	62	55	426	162	247	42	41	1674
A., .	*2.50	37	543	20	22	37	63	69	448	152	249	41	41	1722
Ave	rage	2.2%	31.5%	1.2%	1.3%	2.1%	3.7%	4.0%	26.0%	8.8%	14.4%	2.4%	2.4%	100.0%
2022 B	ASELINE	41	555	22	29	43	68	81	477	162	252	48	45	1823
2022 8/	ASELINE	2.2%	30.4%	1.2%	1.6%	2.4%	3.7%	4.4%	26.2%	8.9%	13.8%	2.6%	2.5%	100.0%

Site	Day	Service Start Time	0:00 - 0:15	0:15 - 0:30	0:30 - 0:45	0:45 - 1:00	1:00 - 1:15	Peak Hour Total	PHF	
		8:45 AM	-	8	36	126	47	217	0.43	
2 42 Church - Brighton	Sunday	10:15 AM	2	27	96	226	64	413	0.46	
		11:45 AM	5	9	70	190	176	445	0.59	Excluded
		9:00 AM	-	9	40	126	36	211	0.42	
Kensington Church - Clinton Township	Sunday	10:30 AM	6	12	69	162	68	311	0.48	
		12:00 PM	7	9	33	119	48	209	0.44	
		8:30 AM	4	9	8	38	10	65	0.43	
Woodside Bible Church - White Lake	Sunday	10:00 AM	4	8	29	77	18	132	0.43	
		11:30 AM	3	0	12	33	22	67	0.51	
TOTAL		-	31	91	393	1,097	489	2,070	0.45	
				4%	19%	53%	24%			

Church Entering Traffic Volumes Prior to Start of Service

Church Exiting Traffic Volumes After End of Service

Site	Day	Service End Time	-0:00 - 0:15	0:00 - 0:15	0:15 - 0:30	0:30 - 0:45	0:45 - 1:00	Peak Hour Total	PHF	
		9:45 AM	14	159	38	30	11	238	0.37	
2 42 Church - Brighton	Sunday	11:15 AM	7	190	167	70	42	469	0.62	Ex
		12:45 PM	15	232	153	72	28	485	0.52	
Kansington Church Clinton Township	Sunday	10:00 AM	2	113	36	12	3	164	0.36]
Kensington Church - Clinton Township	Sunday	11:30 AM	4	159	88	24	7	278	0.44	1
		9:30 AM	0	11	4	2	0	17	0.39]
Woodside Bible Church - White Lake	Sunday	11:00 AM	12	54	8	4	2	68	0.31	1
		12:30 PM	2	40	14	11	2	67	0.42]
TOTAL			56	958	508	225	95	1,786	0.40]
				54%	28%	13%	5%			-

Thick line represents service start/end time

Excluded

Zip Code	Members		Direct	tion	
Zip Code	Members	North	South	East	West
48843	103	10%	10%	10%	70%
48855	34	50%	0%	0%	50%
48836	15	0%	0%	0%	100%
48116	11	0%	100%	0%	0%
48169	13	0%	100%	0%	0%
48114	9	0%	75%	25%	0%
48137	4	0%	100%	0%	0%
48430	4	100%	0%	0%	0%
48353	2	100%	0%	0%	0%
Total:	195	33	45	12	104
		17%	23%	6%	53%

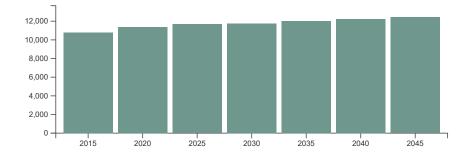
SEMCOG | Southeast Michigan Council of Governments

Community Profiles

YOU ARE VIEWING DATA FOR:

Brighton Township

4363 Buno Rd Brighton, MI 48114-9269 http://www.brightontwp.com/


SEMCOG MEMBER Census 2010 Population: 17,791 Area: 34.6 square miles

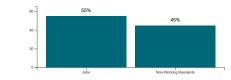
VIEW COMMUNITY EXPLORER MAP

Economy & Jobs

Link to American Community Survey (ACS) Profiles: Select a Year 2013-2017 V Economic

Forecasted Jobs

Source: SEMCOG 2045 Regional Development Forecast


Forecasted Jobs by Industry Sector

Forecasted Jobs By Industry Sector	2015	2020	2025	2030	2035	2040	2045	Change 2015-2045	Pct Change 2015-2045
Natural Resources, Mining, & Construction	1,021	1,209	1,152	1,063	1,053	1,037	1,027	6	0.6%
Manufacturing	551	552	558	565	584	606	603	52	9.4%
Wholesale Trade	350	350	325	323	330	332	349	-1	-0.3%
Retail Trade	1,149	1,224	1,145	1,078	1,056	932	926	-223	-19.4%
Transportation, Warehousing, & Utilities	256	238	245	246	237	235	243	-13	-5.1%
Information & Financial Activities	1,195	1,312	1,339	1,380	1,418	1,496	1,540	345	28.9%
Professional and Technical Services & Corporate HQ	2,482	2,447	2,527	2,580	2,631	2,673	2,692	210	8.5%
Administrative, Support, & Waste Services	752	817	861	858	880	914	909	157	20.9%
Education Services	425	461	474	486	496	501	506	81	19.1%
Healthcare Services	907	924	1,083	1,158	1,207	1,280	1,369	462	50.9%
Leisure & Hospitality	709	806	849	886	955	1,010	1,032	323	45.6%
Other Services	838	891	956	972	1,008	1,055	1,055	217	25.9%
Public Administration	156	157	160	167	170	172	174	18	11.5%
Total Employment Numbers	10,791	11,388	11,674	11,762	12,025	12,243	12,425	1,634	15.1%

Source: SEMCOG 2045 Regional Development Forecast

Daytime Population

Daytime Population	SEMCOG and ACS 2015
Jobs	10,791
Non-Working Residents	8,809
Age 15 and under	3,428
Not in labor force	4,903
Unemployed	478
Daytime Population	19,600

Source: SEMCOG 2045 Regional Development Forecast and 2011-2015 American Community Survey 5-Year Estimates

Note: The number of residents attending school outside Southeast Michigan is not available.

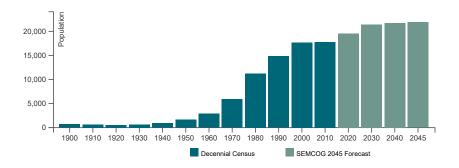
Likewise, the number of students commuting into Southeast Michigan to attend school is also not known.

Community Profiles

YOU ARE VIEWING DATA FOR:

Brighton Township

4363 Buno Rd Brighton, MI 48114-9269 http://www.brightontwp.com/


SEMCOG MEMBER Census 2010 Population: 17,791 Area: 34.6 square miles

VIEW COMMUNITY EXPLORER MAP

Population and Households

Link to American Community Survey (ACS) Profiles: Select a Year 2013-2017
Social | Demographic Population and Household Estimates for Southeast Michigan, 2019

Population Forecast

Population and Households

Population and Households	Census 2010	Change 2000-2010	Pct Change 2000-2010	SEMCOG Jul 2019	SEMCOG 2045
Total Population	17,791	118	0.7%	18,776	21,883
Group Quarters Population	111	54	94.7%	107	233
Household Population	17,680	64	0.4%	18,669	21,650
Housing Units	6,765	588	9.5%	7,139	-
Households (Occupied Units)	6,415	465	7.8%	6,833	8,300
Residential Vacancy Rate	5.2%	1.5%	-	4.3%	-
Average Household Size	2.76	-0.20	-	2.73	2.61

Source: U.S. Census Bureau, SEMCOG Population and Household Estimates, and SEMCOG 2045 Regional Development Forecast

Components of Population Change

Components of Population Change	2000-2005 Avg.	2006-2010 Avg.	2011-2015 Avg.
Natural Increase (Births - Deaths)	156	40	42
Births	248	130	147
Deaths	92	90	105
Net Migration (Movement In - Movement Out)	-63	-109	100
Population Change (Natural Increase + Net Migration)	93	-69	142

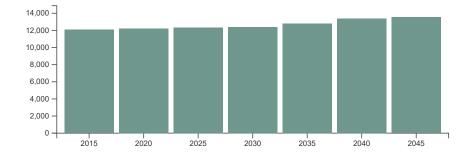
Source: Michigan Department of Community Health Vital Statistics, U.S. Census Bureau, and SEMCOG SEMCOG | Southeast Michigan Council of Governments

Community Profiles

YOU ARE VIEWING DATA FOR:

Genoa Township

2911 Dorr Rd Brighton, MI 48116-9436 http://www.genoa.org


SEMCOG MEMBER Census 2010 Population: 19,821 Area: 36.3 square miles

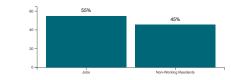
VIEW COMMUNITY EXPLORER MAP

Economy & Jobs

Link to American Community Survey (ACS) Profiles: Select a Year 2013-2017 V Economic

Forecasted Jobs

Source: SEMCOG 2045 Regional Development Forecast


Forecasted Jobs by Industry Sector

Forecasted Jobs By Industry Sector	2015	2020	2025	2030	2035	2040	2045	Change 2015-2045	Pct Change 2015-2045
Natural Resources, Mining, & Construction	1,054	1,086	1,045	993	968	963	952	-102	-9.7%
Manufacturing	782	719	684	621	622	584	561	-221	-28.3%
Wholesale Trade	329	276	270	264	281	280	282	-47	-14.3%
Retail Trade	2,122	2,032	2,018	1,928	1,909	2,177	2,104	-18	-0.8%
Transportation, Warehousing, & Utilities	148	179	200	207	241	283	312	164	110.8%
Information & Financial Activities	1,457	1,531	1,561	1,608	1,723	1,754	1,783	326	22.4%
Professional and Technical Services & Corporate HQ	814	808	870	932	1,016	1,096	1,152	338	41.5%
Administrative, Support, & Waste Services	715	746	775	809	832	869	877	162	22.7%
Education Services	371	393	398	406	416	424	436	65	17.5%
Healthcare Services	1,200	1,261	1,287	1,282	1,348	1,455	1,523	323	26.9%
Leisure & Hospitality	1,615	1,642	1,673	1,772	1,822	1,888	1,951	336	20.8%
Other Services	925	967	977	996	1,027	1,000	983	58	6.3%
Public Administration	540	562	580	589	604	614	618	78	14.4%
Total Employment Numbers	12,072	12,202	12,338	12,407	12,809	13,387	13,534	1,462	12.1%

Source: SEMCOG 2045 Regional Development Forecast

Daytime Population

Daytime Population	SEMCOG and ACS 2015
Jobs	12,072
Non-Working Residents	10,009
Age 15 and under	3,738
Not in labor force	5,566
Unemployed	705
Daytime Population	22,081

Source: SEMCOG 2045 Regional Development Forecast and 2011-2015 American Community Survey 5-Year Estimates

Note: The number of residents attending school outside Southeast Michigan is not available.

Likewise, the number of students commuting into Southeast Michigan to attend school is also not known.

Community Profiles

YOU ARE VIEWING DATA FOR:

Genoa Township

2911 Dorr Rd Brighton, MI 48116-9436 http://www.genoa.org

SEMCOG MEMBER Census 2010 Population: 19,821 Area: 36.3 square miles

VIEW COMMUNITY EXPLORER MAP

Population and Households

Link to American Community Survey (ACS) Profiles: Select a Year 2013-2017
Social | Demographic Population and Household Estimates for Southeast Michigan, 2019

35,000 - 25,000 - 20,000 - 15,000 - 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2045 Decennial Census SEMCOG 2045 Forecast

Population Forecast

Population and Households

Population and Households	Census 2010	Change 2000-2010	Pct Change 2000-2010	SEMCOG Jul 2019	SEMCOG 2045
Total Population	19,821	3,920	24.7%	21,809	32,907
Group Quarters Population	21	-24	-53.3%	335	195
Household Population	19,800	3,944	24.9%	21,474	32,712
Housing Units	8,418	2,072	32.7%	8,943	-
Households (Occupied Units)	7,807	1,968	33.7%	8,650	14,124
Residential Vacancy Rate	7.3%	-0.7%	-	3.3%	-
Average Household Size	2.54	-0.18	-	2.48	2.32

Source: U.S. Census Bureau, SEMCOG Population and Household Estimates, and SEMCOG 2045 Regional Development Forecast

Components of Population Change

Components of Population Change	2000-2005 Avg.	2006-2010 Avg.	2011-2015 Avg.
Natural Increase (Births - Deaths)	60	3	9
Births	176	109	148
Deaths	116	106	139
Net Migration (Movement In - Movement Out)	666	55	110
Population Change (Natural Increase + Net Migration)	726	58	119

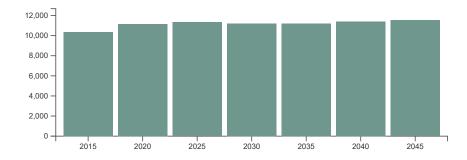
Source: Michigan Department of Community Health Vital Statistics, U.S. Census Bureau, and SEMCOG SEMCOG | Southeast Michigan Council of Governments

Community Profiles

YOU ARE VIEWING DATA FOR:

City of Howell

611 E Grand River Ave Ste 201 Howell, MI 48843-2388 http://www.cityofhowell.org/


SEMCOG MEMBER Census 2010 Population: 9,489 Area: 4.3 square miles

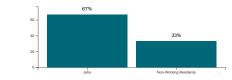
VIEW COMMUNITY EXPLORER MAP

Economy & Jobs

Link to American Community Survey (ACS) Profiles: Select a Year 2013-2017 V Economic

Forecasted Jobs

Source: SEMCOG 2045 Regional Development Forecast


Forecasted Jobs by Industry Sector

Forecasted Jobs By Industry Sector	2015	2020	2025	2030	2035	2040	2045	Change 2015-2045	Pct Change 2015-2045
Natural Resources, Mining, & Construction	227	392	439	433	427	434	429	202	89%
Manufacturing	1,761	1,759	1,680	1,537	1,401	1,320	1,252	-509	-28.9%
Wholesale Trade	128	189	230	243	217	231	235	107	83.6%
Retail Trade	459	517	529	506	500	514	495	36	7.8%
Transportation, Warehousing, & Utilities	215	225	221	229	223	225	218	3	1.4%
Information & Financial Activities	1,761	1,769	1,801	1,748	1,758	1,801	1,809	48	2.7%
Professional and Technical Services & Corporate HQ	506	578	620	632	686	750	802	296	58.5%
Administrative, Support, & Waste Services	388	368	359	351	340	375	407	19	4.9%
Education Services	1,082	1,125	1,152	1,168	1,185	1,208	1,220	138	12.8%
Healthcare Services	1,614	1,633	1,687	1,727	1,807	1,913	1,980	366	22.7%
Leisure & Hospitality	804	1,119	1,140	1,143	1,165	1,127	1,168	364	45.3%
Other Services	504	502	484	477	473	467	456	-48	-9.5%
Public Administration	916	964	993	1,012	1,032	1,047	1,056	140	15.3%
Total Employment Numbers	10,365	11,140	11,335	11,206	11,214	11,412	11,527	1,162	11.2%

Source: SEMCOG 2045 Regional Development Forecast

Daytime Population

Daytime Population	SEMCOG and ACS 2015
Jobs	10,365
Non-Working Residents	5,157
Age 15 and under	2,225
Not in labor force	2,644
Unemployed	288
Daytime Population	15,522

Source: SEMCOG 2045 Regional Development Forecast and 2011-2015 American Community Survey 5-Year Estimates

Note: The number of residents attending school outside Southeast Michigan is not available.

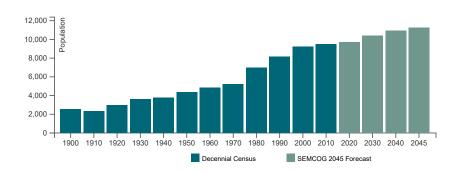
Likewise, the number of students commuting into Southeast Michigan to attend school is also not known.

SEMCOG | Southeast Michigan Council of Governments

Community Profiles

YOU ARE VIEWING DATA FOR:

City of Howell


611 E Grand River Ave Ste 201 Howell, MI 48843-2388 http://www.cityofhowell.org/

SEMCOG MEMBER Census 2010 Population: 9,489 Area: 4.3 square miles

VIEW COMMUNITY EXPLORER MAP

Population and Households

Link to American Community Survey (ACS) Profiles: Select a Year 2013-2017
Social | Demographic
Population and Household Estimates for Southeast Michigan, 2019

Population Forecast

Note for City of Howell : Incorporated in 1910 from Village of Howell. Population numbers prior to 1910 are of the village.

Population and Households

Population and Households	Census 2010	Change 2000-2010	Pct Change 2000-2010	SEMCOG Jul 2019	SEMCOG 2045
Total Population	9,489	257	2.8%	9,459	11,256
Group Quarters Population	426	33	8.4%	430	689
Household Population	9,063	224	2.5%	9,029	10,567
Housing Units	4,551	463	11.3%	4,332	-
Households (Occupied Units)	4,028	171	4.4%	4,072	4,620
Residential Vacancy Rate	11.5%	5.8%	-	6.0%	-
Average Household Size	2.25	-0.04	-	2.22	2.29

Source: U.S. Census Bureau, SEMCOG Population and Household Estimates, and SEMCOG 2045 Regional Development Forecast

Components of Population Change

Components of Population Change	2000-2005 Avg.	2006-2010 Avg.	2011-2015 Avg.
Natural Increase (Births - Deaths)	190	156	82
Births	321	301	208
Deaths	131	145	126
Net Migration (Movement In - Movement Out)	-110	-184	-92
Population Change (Natural Increase + Net Migration)	80	-28	-10

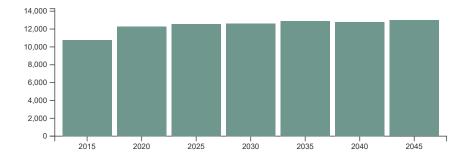
Source: Michigan Department of Community Health Vital Statistics, U.S. Census Bureau, and SEMCOG SEMCOG | Southeast Michigan Council of Governments

Community Profiles

YOU ARE VIEWING DATA FOR:

City of Brighton

200 N 1st St Brighton, MI 48116-1593 http://www.brightoncity.org


SEMCOG MEMBER Census 2010 Population: 7,444 Area: 3.7 square miles

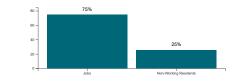
VIEW COMMUNITY EXPLORER MAP

Economy & Jobs

Link to American Community Survey (ACS) Profiles: Select a Year 2013-2017 V Economic

Forecasted Jobs

Source: SEMCOG 2045 Regional Development Forecast


Forecasted Jobs by Industry Sector

Forecasted Jobs By Industry Sector	2015	2020	2025	2030	2035	2040	2045	Change 2015-2045	Pct Change 2015-2045
Natural Resources, Mining, & Construction	405	652	647	635	648	647	677	272	67.2%
Manufacturing	929	1,069	1,034	988	969	959	933	4	0.4%
Wholesale Trade	152	248	241	207	216	219	199	47	30.9%
Retail Trade	1,604	1,830	1,840	1,774	1,738	1,431	1,345	-259	-16.1%
Transportation, Warehousing, & Utilities	141	165	178	203	225	227	246	105	74.5%
Information & Financial Activities	1,476	1,577	1,651	1,736	1,782	1,845	1,930	454	30.8%
Professional and Technical Services & Corporate HQ	894	1,015	971	1,008	1,020	1,044	1,068	174	19.5%
Administrative, Support, & Waste Services	552	558	561	530	566	572	601	49	8.9%
Education Services	583	619	631	637	653	663	667	84	14.4%
Healthcare Services	1,239	1,657	1,804	1,833	1,913	1,936	2,006	767	61.9%
Leisure & Hospitality	1,924	1,926	2,067	2,138	2,226	2,251	2,308	384	20%
Other Services	584	664	642	614	644	671	676	92	15.8%
Public Administration	289	302	309	314	319	325	330	41	14.2%
Total Employment Numbers	10,772	12,282	12,576	12,617	12,919	12,790	12,986	2,214	20.6%

Source: SEMCOG 2045 Regional Development Forecast

Daytime Population

Daytime Population	SEMCOG and ACS 2015
Jobs	10,772
Non-Working Residents	3,684
Age 15 and under	1,146
Not in labor force	2,391
Unemployed	147
Daytime Population	14,456

Source: SEMCOG 2045 Regional Development Forecast and 2011-2015 American Community Survey 5-Year Estimates

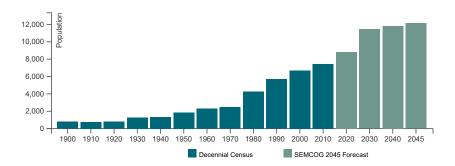
Note: The number of residents attending school outside Southeast Michigan is not available.

Likewise, the number of students commuting into Southeast Michigan to attend school is also not known.

Community Profiles

YOU ARE VIEWING DATA FOR:

City of Brighton


200 N 1st St Brighton, MI 48116-1593 http://www.brightoncity.org

SEMCOG MEMBER Census 2010 Population: 7,444 Area: 3.7 square miles

VIEW COMMUNITY EXPLORER MAP

Population and Households

Link to American Community Survey (ACS) Profiles: Select a Year 2013-2017
Social | Demographic Population and Household Estimates for Southeast Michigan, 2019

Population Forecast

Note for City of Brighton : Incorporated in 1928 from Village of Brighton. Population numbers prior to 1928 are of the village.

Population and Households

Population and Households	Census 2010	Change 2000-2010	Pct Change 2000-2010	SEMCOG Jul 2019	SEMCOG 2045
Total Population	7,444	743	11.1%	7,895	12,127
Group Quarters Population	169	125	284.1%	181	283
Household Population	7,275	618	9.3%	7,714	11,844
Housing Units	3,905	664	20.5%	3,889	-
Households (Occupied Units)	3,603	500	16.1%	3,637	4,753
Residential Vacancy Rate	7.7%	3.5%	-	6.5%	-
Average Household Size	2.02	-0.13	-	2.12	2.49

Source: U.S. Census Bureau, SEMCOG Population and Household Estimates, and SEMCOG 2045 Regional Development Forecast

Components of Population Change

Components of Population Change	2000-2005 Avg.	2006-2010 Avg.	2011-2015 Avg.
Natural Increase (Births - Deaths)	32	49	-11
Births	149	169	125
Deaths	117	120	136
Net Migration (Movement In - Movement Out)	40	28	18
Population Change (Natural Increase + Net Migration)	72	77	7

Source: Michigan Department of Community Health Vital Statistics, U.S. Census Bureau, and SEMCOG

Appendix B – Existing Conditions Data

Control Dolay (s/yoh)	LOS by Volume-to-Capacity Ratio						
Control Delay (s/veh)	<u><</u> 1.0	> 1.0					
<u><</u> 10	А	F					
>10-20	В	F					
>20-35	С	F					
>35-55	D	F					
>55-80	E	F					
>80	F	F					

Level of Service Criteria for Signalized Intersections

LOS A describes operations with a control delay of 10 s/veh or less and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is low and either progression is exceptionally favorable or the cycle length is very short. If LOS A is the result of favorable progression, most vehicles arrive during the green indication and travel through the intersection without stopping.

LOS B describes operations with control delay between 10 and 20 s/veh and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to capacity ratio is low and either progression is highly favorable or the cycle length is short. More vehicles stop than with LOS A.

LOS C describes operations with control delay between 20 and 35 s/veh and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when progression is favorable or the cycle length is moderate. individual cycle failures (i.e., one or more queued vehicles are not able to depart as a result of insufficient capacity during the cycle) may begin to appear at this level. The number of vehicles stopping is significant, although many vehicles still pass through the intersection without stopping.

LOS D describes operations with control delay between 35 and 55 s/veh and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is high and either progression is ineffective or the cycle length is long. Many vehicles stop and individual cycle failures are noticeable.

LOS E describes operations with control delay between 55 and 80 s/veh and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is high, progression is unfavorable, and the cycle length is long. Individual cycle failures are frequent.

LOS F describes operations with control delay exceeding 80 s/veh or a volume-to-capacity ratio greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is very high, progression is very poor, and the cycle length is long. Most cycles fail to clear the queue.

A lane group can incur a delay less than 80 s/veh when the volume-to-capacity ratio exceeds 1.0. This condition typically occurs when the cycle length is short, the signal progression is favorable, or both. As a result, both the delay and volume-to-capacity ratio are considered when lane group LOS is established. A ratio of 1.0 or more indicates cycle capacity is fully utilized and represents failure from a capacity perspective (just as delay in excess of 80 s/veh represents failure from a delay perspective).

Source: <u>Highway Capacity Manual, 6th Edition.</u> Transportation Research Board, National Research Council.

Control Doloy (c/ych)	LOS by Volume-to-Capacity Ratio							
Control Delay (s/veh)	<u><</u> 1.0	> 1.0						
<u><</u> 10	А	F						
>10-15	В	F						
>15-25	С	F						
>25-35	D	F						
>35-50	Е	F						
>50	F	F						

Level of Service Criteria for Two-Way-Stop-Controlled Intersections

LOS for TWSC intersection is determined by the computed or measured control delay. For motor vehicles, LOS is determined for each minor-street movement (or shared movement), as well as the major-street left turns. LOS is not defined for the intersection as a whole or for major-street approaches for three primary reasons: (a) major street through vehicles are assumed to experience zero delay; (b) the disproportionate number of major-street through vehicles at a typical TWSC intersection skews the weighted average of all movements, resulting in very low overall average delay for all vehicles; and (c) the resulting low delay can mask LOS deficiencies of minor movements. LOS F is assigned to a movement if its volume-to-capacity ratio exceeds 1.0, regardless of the control delay.

The LOS criteria for TWSC intersections differ somewhat from the criteria used for signalized intersections, primarily because user perceptions differ among transportation facility types. The expectation is that a signalized intersection is designed to carry higher traffic volumes and will present greater delay than an unsignalized intersection. Unsignalized intersections are also associated with more uncertainty for users, as delays are less predictable than they are at signals.

Source: <u>Highway Capacity Manual, 6th Edition.</u> Transportation Research Board, National Research Council.

	٠	+	1	4	ł	•	1	t	1	4	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	f.		٦	Þ		٦	1	1	7	^	1
Traffic Volume (veh/h)	38	36	308	62	43	25	65	279	33	18	652	62
Future Volume (veh/h)	38	36	308	62	43	25	65	279	33	18	652	62
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1984	1984	1984	1953	1953	1953	1922	1922	1922	1969	1969	1969
Adj Flow Rate, veh/h	47	44	287	78	54	32	74	317	38	19	701	67
Peak Hour Factor	0.81	0.81	0.81	0.79	0.79	0.79	0.88	0.88	0.88	0.93	0.93	0.93
Percent Heavy Veh, %	1	1	1	3	3	3	5	5	5	2	2	2
Cap, veh/h	403	61	399	193	308	182	250	1062	900	518	808	685
Arrive On Green	0.27	0.27	0.27	0.27	0.27	0.27	0.05	0.55	0.55	0.41	0.41	0.41
Sat Flow, veh/h	1322	228	1488	1041	1149	681	1830	1922	1629	1026	1969	1668
Grp Volume(v), veh/h	47	0	331	78	0	86	74	317	38	19	701	67
Grp Sat Flow(s),veh/h/ln	1322	0	1717	1041	0	1831	1830	1922	1629	1026	1969	1668
Q Serve(g_s), s	2.1	0.0	13.1	5.5	0.0	2.7	1.6	6.6	0.8	0.8	24.3	1.8
Cycle Q Clear(g_c), s	4.8	0.0	13.1	18.5	0.0	2.7	1.6	6.6	0.8	0.8	24.3	1.8
Prop In Lane	1.00		0.87	1.00		0.37	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	403	0	460	193	0	490	250	1062	900	518	808	685
V/C Ratio(X)	0.12	0.00	0.72	0.40	0.00	0.18	0.30	0.30	0.04	0.04	0.87	0.10
Avail Cap(c_a), veh/h	403	0	460	193	0	490	448	1666	1411	729	1213	1028
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	22.8	0.0	24.8	33.2	0.0	21.0	15.3	8.9	7.6	13.2	20.2	13.5
Incr Delay (d2), s/veh	0.1	0.0	5.4	1.4	0.0	0.2	0.7	0.2	0.0	0.0	4.6	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.6	0.0	5.3	1.3	0.0	1.0	0.5	2.0	0.2	0.2	10.0	0.6
Unsig. Movement Delay, s/veh		0.0	0.0	1.0	0.0	1.0	0.0	2.0	0.2	0.2	10.0	0.0
LnGrp Delay(d),s/veh	23.0	0.0	30.2	34.6	0.0	21.2	16.0	9.1	7.7	13.3	24.7	13.6
LnGrp LOS	20.0 C	A	C	C	A	C	B	A	Α	B	C	B
Approach Vol, veh/h	<u> </u>	378	<u> </u>	<u> </u>	164	<u> </u>		429			787	
Approach Delay, s/veh		29.3			27.5			10.2			23.5	
Approach LOS		23.3 C			27.5 C			10.2 B			20.0 C	
					U	_					U	
Timer - Assigned Phs	10.0	2		4		6		8				
Phs Duration (G+Y+Rc), s	10.6	37.3		26.7		48.0 * c 7		26.7				
Change Period (Y+Rc), s	* 6.7	* 6.7		* 6.7		* 6.7		* 6.7				
Max Green Setting (Gmax), s	* 12	* 46		* 20		* 65		* 20				
Max Q Clear Time (g_c+l1), s	3.6	26.3		15.1		8.6		20.5				
Green Ext Time (p_c), s	0.1	4.3		0.9		1.8		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			21.9									
HCM 6th LOS			С									
Notoo												

Notes

	٠	+	7	1	+	•	1	1	1	4	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	T.		٦	₽.	10	٦	•	1	٦	1	7
Traffic Volume (veh/h)	114	78	200	82	64	46	295	783	93	28	462	66
Future Volume (veh/h)	114	78	200	82	64	46	295	783	93	28	462	66
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	4 00	1.00	1.00	1 00	1.00	1.00	4 00	1.00	1.00	4 00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	1060	No	1060	1060	No	1060	1001	No	1001	1060	No	1060
Adj Sat Flow, veh/h/ln	1969	1969	1969	1969	1969	1969	1984	1984	1984	1969	1969	1969
Adj Flow Rate, veh/h	152 0.75	104 0.75	200	96	75 0.85	54 0.85	324 0.91	860 0.91	102 0.91	31 0.89	519	74 0.89
Peak Hour Factor	0.75	0.75	0.75 2	0.85 2	0.65	0.05	0.91	0.91	0.91	0.69 2	0.89 2	0.69
Percent Heavy Veh, %	2 367	∠ 161	2 310	223	285	205	420	ı 1087	922	2 217	2 627	2 532
Cap, veh/h Arrive On Green	0.27	0.27	0.27	0.27	205 0.27	205 0.27	420 0.14	0.55	922 0.55	0.32	0.32	0.32
Sat Flow, veh/h	1261	602	1158	1075	1064	766	1890	0.55 1984	1682	0.32 584	0.32 1969	1668
												74
Grp Volume(v), veh/h	152	0	304	96	0	129	324	860	102	31	519	
Grp Sat Flow(s),veh/h/ln	1261 7.9	0	1760 11.1	1075 6.3	0 0.0	1831 4.0	1890	1984 25.2	1682 2.1	584 3.3	1969	1668 2.3
Q Serve(g_s), s	7.9 11.9	0.0 0.0	11.1	0.3 17.4	0.0	4.0 4.0	7.8 7.8	25.2 25.2	2.1	3.3 11.7	17.7 17.7	2.3 2.3
Cycle Q Clear(g_c), s	1.00	0.0	0.66	17.4	0.0	4.0 0.42	7.0 1.00	Z9.Z	2.1 1.00	1.00	17.7	2.3 1.00
Prop In Lane	367	0	0.00 471	223	0	0.42 490	420	1087	922	217	627	532
Lane Grp Cap(c), veh/h V/C Ratio(X)	0.41	0.00	0.64	0.43	0.00	490 0.26	420 0.77	0.79	922 0.11	0.14	0.83	0.14
Avail Cap(c_a), veh/h	376	0.00	484	230	0.00	503	473	1765	1496	400	1245	1055
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	25.7	0.00	23.6	31.3	0.00	21.0	15.6	13.1	7.9	24.4	22.9	17.7
Incr Delay (d2), s/veh	0.7	0.0	2.8	1.3	0.0	0.3	6.8	1.3	0.1	0.3	22.5	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.1	0.0	4.3	1.5	0.0	1.5	3.3	8.2	0.6	0.4	7.4	0.0
Unsig. Movement Delay, s/veh		0.0	4.0	1.0	0.0	1.0	0.0	0.2	0.0	0.4	1.4	0.0
LnGrp Delay(d),s/veh	26.4	0.0	26.4	32.6	0.0	21.3	22.4	14.5	8.0	24.7	25.8	17.8
LnGrp LOS	C	A	C	C	A	C	C	B	A	C	20.0 C	B
Approach Vol, veh/h		456			225			1286			624	
Approach Delay, s/veh		26.4			26.1			15.9			24.8	
Approach LOS		C			C			B			C	
Timer - Assigned Phs	1	2		4	-	6		8			-	
Phs Duration (G+Y+Rc), s	16.7	29.9		26.2		46.6		26.2				
Change Period (Y+Rc), s	* 6.7	* 6.7		* 6.7		* 6.7		* 6.7				
Max Green Setting (Gmax), s	* 12	* 46		* 20		* 65		* 20				
Max Q Clear Time (g_c+l1), s	9.8	19.7		13.9		27.2		19.4				
Green Ext Time (p_c), s	0.2	3.4		1.1		6.7		0.1				
Intersection Summary												
HCM 6th Ctrl Delay			20.8									
HCM 6th LOS			20.0 C									
			Ũ									

Notes

	٠	+	1	4	ł	•	1	t	1	4	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	f.		٦	T+		٦	†	1	٦	^	1
Traffic Volume (veh/h)	32	33	203	69	54	16	146	335	46	15	473	50
Future Volume (veh/h)	32	33	203	69	54	16	146	335	46	15	473	50
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	1000	No	4000	1000	No	1000	4000	No	1000	1000	No	
Adj Sat Flow, veh/h/ln	1969	1969	1969	1969	1969	1969	1969	1969	1969	1969	1969	1969
Adj Flow Rate, veh/h	50	45	151	91	78	29	178	394	62	22	538	66
Peak Hour Factor	0.64	0.74	0.85	0.76	0.69	0.55	0.82	0.85	0.74	0.67	0.88	0.76
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	342	86	287	262	295	110	374	1086	921	449	683	579
Arrive On Green	0.22	0.22	0.22	0.22	0.22	0.22	0.09	0.55	0.55	0.35	0.35	0.35
Sat Flow, veh/h	1287	397	1332	1187	1368	509	1875	1969	1668	935	1969	1668
Grp Volume(v), veh/h	50	0	196	91	0	107	178	394	62	22	538	66
Grp Sat Flow(s),veh/h/ln	1287	0	1729	1187	0	1877	1875	1969	1668	935	1969	1668
Q Serve(g_s), s	1.9	0.0	5.8	4.2	0.0	2.7	3.2	6.5	1.0	0.9	14.2	1.6
Cycle Q Clear(g_c), s	4.7	0.0	5.8	10.0	0.0	2.7	3.2	6.5	1.0	0.9	14.2	1.6
Prop In Lane	1.00		0.77	1.00		0.27	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	342	0	373	262	0	405	374	1086	921	449	683	579
V/C Ratio(X)	0.15	0.00	0.53	0.35	0.00	0.26	0.48	0.36	0.07	0.05	0.79	0.11
Avail Cap(c_a), veh/h	510	0	600	417	0	651	598	2209	1872	871	1571	1331
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	20.7	0.0	20.0	24.4	0.0	18.8	11.8	7.2	6.0	12.6	16.9	12.8
Incr Delay (d2), s/veh	0.2	0.0	1.1	0.8	0.0	0.3	0.9	0.2	0.0	0.0	2.1	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.5	0.0	2.0	1.1	0.0	1.0	1.0	1.6	0.2	0.2	5.2	0.5
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	20.9	0.0	21.1	25.2	0.0	19.1	12.8	7.4	6.0	12.6	19.0	12.9
LnGrp LOS	С	A	С	С	A	В	В	A	A	В	В	B
Approach Vol, veh/h		246			198			634			626	
Approach Delay, s/veh		21.1			21.9			8.8			18.1	
Approach LOS		С			С			A			В	
Timer - Assigned Phs	1	2		4		6		8				
Phs Duration (G+Y+Rc), s	11.8	26.7		19.1		38.5		19.1				
Change Period (Y+Rc), s	* 6.7	* 6.7		* 6.7		* 6.7		* 6.7				
Max Green Setting (Gmax), s	* 12	* 46		* 20		* 65		* 20				
Max Q Clear Time (g_c+I1), s	5.2	16.2		7.8		8.5		12.0				
Green Ext Time (p_c), s	0.2	3.4		0.9		2.3		0.4				
Intersection Summary												
HCM 6th Ctrl Delay			15.5									
HCM 6th LOS			В									
Notoo												

Notes

	٠	+	1	4	ł	*	1	1	1	4	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	្រា	1.	050	1	ħ		1	1	1	1	1	1
Traffic Volume (veh/h)	45	48	252	68	43	29	162	477	81	22	555	41
Future Volume (veh/h)	45	48	252	68	43	29	162	477	81	22	555	41
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	4 00	1.00	1.00	1 00	1.00	1.00	4 00	1.00	1.00	1 00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	1000	No	1000	1000		1000	1000	No	1000	1000	No	1000
Adj Sat Flow, veh/h/ln	1969	1969	1969	1969 89	1969	1969	1969 200	1969	1969 109	1969 31	1969 584	1969
Adj Flow Rate, veh/h	61 0.74	55 0.87	195 0.91	89 0.76	68 0.63	40 0.72	200 0.81	530 0.90	0.74	0.71		55 0.75
Peak Hour Factor	0.74	0.07	0.91	0.76	0.63	0.72	0.01	0.90	0.74	0.71	0.95 2	0.75
Percent Heavy Veh, %	2 358	2 91	2 323	236	2 279	ے 164	2 355	ے 1092	2 926	2 393	Z 706	∠ 598
Cap, veh/h Arrive On Green	0.24	0.24	0.24	0.24	0.24	0.24	0.09	0.55	920 0.55	0.36	0.36	0.36
Sat Flow, veh/h	0.24 1286	0.24 380	0.24 1347	0.24 1130	0.24 1162	0.24 684	1875	1969	1668	0.30 790	1969	1668
Grp Volume(v), veh/h	61	0	250	89	0	108	200	530	109	31	584	55
Grp Sat Flow(s),veh/h/ln	1286	0	1726	1130	0	1846	1875	1969	1668	790	1969	1668
Q Serve(g_s), s	2.6	0.0	8.4	5.0	0.0	3.1	4.0	10.7	2.0	1.7	17.7	1.4
Cycle Q Clear(g_c), s	5.7	0.0	8.4	13.4	0.0	3.1	4.0	10.7	2.0	1.7	17.7	1.4
Prop In Lane	1.00	0	0.78 414	1.00 236	٥	0.37 443	1.00	1000	1.00 926	1.00 393	706	1.00
Lane Grp Cap(c), veh/h	358	0	414 0.60		0	443 0.24	355	1092	926 0.12		0.83	598
V/C Ratio(X)	0.17 443	0.00	0.60 529	0.38 311	0.00 0	0.24 565	0.56 524	0.49 1951	0.12 1654	0.08 667	0.63 1387	0.09 1176
Avail Cap(c_a), veh/h HCM Platoon Ratio	443 1.00	0 1.00	529 1.00	1.00	1.00	505 1.00	524 1.00	1.00	1.00	1.00	1.00	1.00
	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)		0.00	22.1	28.0	0.00	20.0	13.7	8.9	6.9	14.0	1.00	13.9
Uniform Delay (d), s/veh	22.3 0.2	0.0	22.1 1.4	20.0 1.0	0.0	20.0	13.7	0.9 0.3	0.9 0.1	0.1	2.6	0.1
Incr Delay (d2), s/veh	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	2.0 0.0	0.1
Initial Q Delay(d3),s/veh %ile BackOfQ(50%),veh/ln	0.0	0.0	3.0	1.2	0.0	1.2	1.3	3.0	0.0	0.0	0.0 6.8	0.0
Unsig. Movement Delay, s/veh		0.0	5.0	1.2	0.0	1.2	1.5	5.0	0.5	0.5	0.0	0.4
LnGrp Delay(d),s/veh	22.6	0.0	23.5	29.0	0.0	20.3	15.1	9.2	7.0	14.1	21.6	14.0
LIGIP Delay(d), siven	22.0 C	0.0 A	23.3 C	29.0 C	0.0 A	20.3 C	B	9.2 A	7.0 A	14.1 B	21.0 C	14.0 B
Approach Vol, veh/h	0	311	0	U	197	0	D	839		D	670	<u> </u>
Approach Delay, s/veh		23.3			24.2			10.3			20.7	
Approach LOS		23.3 C			24.2 C			10.5 B			20.7 C	
					U	•					U	
Timer - Assigned Phs	10.0	2		4		6		8				
Phs Duration (G+Y+Rc), s	12.8 * 6.7	30.1 * 6.7		22.4 * 6.7		42.9 * 6.7		22.4 * 6.7				
Change Period (Y+Rc), s				* 20				* 20				
Max Green Setting (Gmax), s	* 12	* 46				* 65						
Max Q Clear Time (g_c+l1), s	6.0 0.2	19.7 3.7		10.4		12.7 3.5		15.4 0.3				
Green Ext Time (p_c), s	0.2	3.7		1.0		3.5		0.5				
Intersection Summary												
HCM 6th Ctrl Delay			17.1									
HCM 6th LOS			В									

Notes

1: Latson Road & Golf Club Road Performance by lane

Lane	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	All
Movements Served	L	TR	L	TR	L	Т	R	L	Т	R	
Denied Del/Veh (s)											0.6
Total Del/Veh (s)	25.1	20.6	41.2	15.0	14.9	8.0	1.1	18.8	21.6	2.5	18.1
Vehicles Exited	41	355	57	68	60	286	34	18	664	63	1646
Hourly Exit Rate	41	355	57	68	60	286	34	18	664	63	1646

2: Site Drive & Golf Club Road Performance by lane

Lane	EB	WB	All
Movements Served	<u></u> т	<u>т</u>	7 41
	I	I	0.0
Denied Del/Veh (s)			0.2
Total Del/Veh (s)	0.8	1.6	1.1
Vehicles Exited	393	165	558
Hourly Exit Rate	393	165	558

3: Latson Road & Site Drive Performance by lane

Lane	NB	SB	All
Movements Served	Т	TR	
Denied Del/Veh (s)			0.1
Total Del/Veh (s)	0.4	4.7	3.6
Vehicles Exited	379	1041	1420
Hourly Exit Rate	379	1041	1420

Total Network Performance

0.7
22.4
1648
1648
5199
32

Movement	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	TR	L	TR	L	Т	R	L	Т	R	
Maximum Queue (ft)	67	254	98	74	81	153	46	102	356	249	
Average Queue (ft)	21	112	38	20	34	60	10	14	186	31	
95th Queue (ft)	54	210	81	51	65	115	34	64	300	117	
Link Distance (ft)		606		891		1088			855		
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	225		225		225		225	150		100	
Storage Blk Time (%)		2							21		
Queuing Penalty (veh)		1							17		

Intersection: 2: Site Drive & Golf Club Road

Movement

Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 3: Latson Road & Site Drive

Movement

Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)

Network Summary

1: Latson Road & Golf Club Road Performance by lane

Lane	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	All
Movements Served	L	TR	L	TR	L	Т	R	L	Т	R	
Denied Del/Veh (s)											0.4
Total Del/Veh (s)	42.3	27.0	91.9	27.8	20.7	17.1	1.8	33.4	24.1	3.4	23.9
Vehicles Exited	109	284	87	104	293	799	95	25	460	64	2320
Hourly Exit Rate	109	284	87	104	293	799	95	25	460	64	2320

2: Site Drive & Golf Club Road Performance by lane

Lane	EB	WB	All
Movements Served	T	Т	
Denied Del/Veh (s)			0.1
Total Del/Veh (s)	0.9	1.7	1.3
Vehicles Exited	392	415	807
Hourly Exit Rate	392	415	807

3: Latson Road & Site Drive Performance by lane

Lane	NB	SB	All
Movements Served	Т	TR	
Denied Del/Veh (s)			0.8
Total Del/Veh (s)	1.4	4.1	2.5
Vehicles Exited	1183	755	1938
Hourly Exit Rate	1183	755	1938

Total Network Performance

Denied Del/Veh (s)	1.1
Total Del/Veh (s)	28.7
Vehicles Exited	2319
Hourly Exit Rate	2319
Input Volume	7354
% of Volume	32

Movement	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	TR	L	TR	L	Т	R	L	Т	R	
Maximum Queue (ft)	187	304	241	219	229	330	55	57	264	97	
Average Queue (ft)	67	120	84	57	106	166	19	22	155	26	
95th Queue (ft)	145	241	203	145	186	268	46	52	239	67	
Link Distance (ft)		606		891		1088			855		
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	225		225		225		225	150		100	
Storage Blk Time (%)	0	3	4	0	0	2			21		
Queuing Penalty (veh)	1	4	5	0	3	7			20		

Intersection: 2: Site Drive & Golf Club Road

Movement

Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 3: Latson Road & Site Drive

Movement

Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)

Network Summary

1: Latson Road & Golf Club Road Performance by lane

Lane	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	All
Movements Served	L	TR	L	TR	L	Т	R	L	Т	R	
Denied Del/Veh (s)											0.6
Total Del/Veh (s)	30.5	13.1	32.0	19.9	13.7	8.4	1.1	20.4	20.3	2.5	15.3
Vehicles Exited	26	239	75	69	144	336	50	14	481	50	1484
Hourly Exit Rate	26	239	75	69	144	336	50	14	481	50	1484

2: Site Drive & Golf Club Road Performance by lane

Lane	EB	WB	All
Movements Served	T	., <u>г</u>	
Denied Del/Veh (s)	·		0.1
Total Del/Veh (s)	0.5	1.7	1.1
Vehicles Exited	262	248	510
Hourly Exit Rate	262	248	510

3: Latson Road & Site Drive Performance by lane

Lane	NB	SB	All
Movements Served	Т	Т	
Denied Del/Veh (s)			0.2
Total Del/Veh (s)	0.5	4.1	2.6
Vehicles Exited	530	761	1291
Hourly Exit Rate	530	761	1291

Total Network Performance

Denied Del/Veh (s)	0.7
Total Del/Veh (s)	19.0
Vehicles Exited	1484
Hourly Exit Rate	1484
Input Volume	4738
% of Volume	31

Movement	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	TR	L	TR	L	Т	R	L	Т	R	
Maximum Queue (ft)	59	154	99	90	128	152	44	57	269	170	
Average Queue (ft)	14	70	44	25	54	60	11	10	142	21	
95th Queue (ft)	44	132	88	65	103	119	34	36	234	82	
Link Distance (ft)		606		891		1088			855		
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	225		225		225		225	150		100	
Storage Blk Time (%)									16		
Queuing Penalty (veh)									11		

Intersection: 2: Site Drive & Golf Club Road

Movement Directions Served

Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 3: Latson Road & Site Drive

Movement

Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)

Network Summary

1: Latson Road & Golf Club Road Performance by lane

Lane	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	All
Movements Served	L	TR	L	TR	L	Т	R	L	Т	R	
Denied Del/Veh (s)											0.4
Total Del/Veh (s)	30.1	17.9	29.9	18.4	17.1	10.3	1.2	23.1	22.9	2.7	17.9
Vehicles Exited	41	300	72	70	158	478	87	17	566	38	1827
Hourly Exit Rate	41	300	72	70	158	478	87	17	566	38	1827

2: Site Drive & Golf Club Road Performance by lane

Lane	EB	WB	All
Movements Served	Т	Т	
Denied Del/Veh (s)			0.1
Total Del/Veh (s)	0.7	1.6	1.1
Vehicles Exited	337	238	575
Hourly Exit Rate	337	238	575

3: Latson Road & Site Drive Performance by lane

Lana	ND	OD.	A 11
Lane	NB	SB	All
Movements Served	Т	Т	
Denied Del/Veh (s)			0.3
Total Del/Veh (s)	0.6	4.7	2.9
Vehicles Exited	720	896	1616
Hourly Exit Rate	720	896	1616

Total Network Performance

Denied Del/Veh (s)	0.7
Total Del/Veh (s)	22.1
Vehicles Exited	1835
Hourly Exit Rate	1835
Input Volume	5834
% of Volume	31
Total Del/Veh (s) Vehicles Exited Hourly Exit Rate Input Volume	1835 1835 5834

Movement	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	TR	L	TR	L	Т	R	L	Т	R	
Maximum Queue (ft)	80	200	121	118	138	171	44	165	363	138	
Average Queue (ft)	24	94	47	26	63	88	17	17	176	24	
95th Queue (ft)	63	167	102	73	110	153	40	83	294	99	
Link Distance (ft)		606		891		1088			855		
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	225		225		225		225	150		100	
Storage Blk Time (%)		0				0			23	0	
Queuing Penalty (veh)		0				0			15	0	

Intersection: 2: Site Drive & Golf Club Road

Movement

Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 3: Latson Road & Site Drive

Movement

Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)

Network Summary

Appendix C – No-Build Conditions Data

	≯	+	1	4	Ŧ	*	1	t	1	4	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	1.		1	ĥ		<u>_</u>	•	1	7	1	1
Traffic Volume (veh/h)	39	37	325	66	44	25	71	301	35	18	708	63
Future Volume (veh/h)	39	37	325	66	44	25	71	301	35	18	708	63
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1 00	1.00	1.00	1 00	1.00	1.00	1 00	1.00	1.00	1 00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	1001	No	1004	1052	No 1953	1052	1922	No 1922	1922	1060	No 1969	1969
Adj Sat Flow, veh/h/ln	1984 48	1984 46	1984 308	1953 84	1953 56	1953 32	1922 81	342	1922 40	1969 19	761	1969 68
Adj Flow Rate, veh/h Peak Hour Factor	40 0.81	40 0.81	0.81	04 0.79	0.79	52 0.79	01 0.88	0.88	40 0.88	0.93	0.93	0.93
	0.01 1	0.01 1	0.01 1	0.79	0.79	0.79	0.00 5	0.00 5	0.00 5	0.95	0.95	0.93
Percent Heavy Veh, % Cap, veh/h	378	57	380	153	297	170	241	1105	937	529	2 860	729
Arrive On Green	0.25	0.25	0.25	0.25	0.25	0.25	0.05	0.57	937 0.57	0.44	0.44	0.44
Sat Flow, veh/h	0.25 1319	223	0.25 1493	1019	0.25 1167	0.25 667	1830	1922	1629	1001	0.44 1969	1668
Grp Volume(v), veh/h	48	0	354	84	0	88	81	342	40	19	761	68
Grp Sat Flow(s),veh/h/ln	1319	0	1716	1019	0	1833	1830	1922	1629	1001	1969	1668
Q Serve(g_s), s	2.3	0.0	15.2	4.8	0.0	3.0	1.8	7.2	0.8	0.9	27.9	1.9
Cycle Q Clear(g_c), s	5.3	0.0	15.2	20.0	0.0	3.0	1.8	7.2	0.8	0.9	27.9	1.9
Prop In Lane	1.00	0	0.87	1.00	0	0.36	1.00	1105	1.00	1.00	960	1.00
Lane Grp Cap(c), veh/h	378	0	437	153	0	467	241	1105	937	529	860	729
V/C Ratio(X)	0.13 378	0.00	0.81 437	0.55 153	0.00	0.19 467	0.34 424	0.31 1582	0.04	0.04 678	0.88 1152	0.09
Avail Cap(c_a), veh/h		0	437 1.00		0 1.00			1.00	1341 1.00			977 1.00
HCM Platoon Ratio	1.00 1.00	1.00 0.00	1.00	1.00 1.00	0.00	1.00 1.00	1.00 1.00	1.00	1.00	1.00 1.00	1.00 1.00	1.00
Upstream Filter(I)	25.0	0.00	27.5	37.5	0.00	22.9	16.2	1.00 8.6	7.3	12.7	20.3	
Uniform Delay (d), s/veh	25.0 0.1	0.0	27.5 11.0	37.5 4.0	0.0	22.9 0.2	0.8	0.0 0.2	7.3 0.0	0.0	20.3 6.6	13.0 0.1
Incr Delay (d2), s/veh	0.1	0.0	0.0	4.0 0.0	0.0	0.2	0.0	0.2	0.0	0.0	0.0	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0 6.8	0.0 1.7	0.0	1.2	0.0	2.2	0.0	0.0	11.9	0.0
%ile BackOfQ(50%),veh/ln Unsig. Movement Delay, s/veh		0.0	0.0	1.7	0.0	1.2	0.0	2.2	0.2	0.2	11.9	0.0
	25.2	0.0	38.5	41.6	0.0	23.1	17.0	8.8	7.3	12.7	27.0	13.0
LnGrp Delay(d),s/veh LnGrp LOS	25.2 C	0.0 A	50.5 D	41.0 D	0.0 A	23.1 C	B	0.0 A	7.3 A	12.7 B	27.0 C	13.0 B
Approach Vol, veh/h	0	402	D	U	172	0	D	463	Λ	D	848	D
Approach Delay, s/veh		402 36.9			32.1			403			25.5	
Approach LOS		50.9 D			52.1 C			B			20.0 C	
					U	•					U	
Timer - Assigned Phs	10.9	2		26.7		6 51.9		8 26.7				
Phs Duration (G+Y+Rc), s	10.8 * 6 7	41.0 * 6 7		26.7 * 6.7		* 6.7		20.7 * 6.7				
Change Period (Y+Rc), s	* 6.7	* 6.7						* 20				
Max Green Setting (Gmax), s	* 12	* 46		* 20		* 65						
Max Q Clear Time (g_c+l1), s	3.8	29.9		17.2		9.2		22.0 0.0				
Green Ext Time (p_c), s	0.1	4.5		0.6		1.9		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			24.8									
HCM 6th LOS			С									
N1 (

Notes

	٠	+	1	4	Ļ	*	1	Ť	1	Ł	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	Þ		1	Þ		٦	†	7	٦	†	1
Traffic Volume (veh/h)	116	79	210	85	65	47	314	834	99	28	488	67
Future Volume (veh/h)	116	79	210	85	65	47	314	834	99	28	488	67
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	4.00	1.00	1.00	4.00	1.00	1.00	4.00	1.00	1.00	4.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	4000	No	4000	4000	No	4000	4004	No	4004	4000	No	4000
Adj Sat Flow, veh/h/ln	1969	1969	1969	1969	1969	1969	1984	1984	1984	1969	1969	1969
Adj Flow Rate, veh/h	155	105	213	100	76	55	345	916	109	31	548	75
Peak Hour Factor	0.75	0.75	0.75	0.85	0.85	0.85	0.91	0.91	0.91	0.89	0.89	0.89
Percent Heavy Veh, %	2	2	2	2	2	2	1	1	1	2	2	2
Cap, veh/h	355	153	310	201	280	202	420	1112	942	196	653	554
Arrive On Green	0.26	0.26	0.26	0.26	0.26	0.26	0.14	0.56	0.56	0.33	0.33	0.33
Sat Flow, veh/h	1259	580	1177	1062	1062	769	1890	1984	1682	550	1969	1668
Grp Volume(v), veh/h	155	0	318	100	0	131	345	916	109	31	548	75
Grp Sat Flow(s),veh/h/ln	1259	0	1757	1062	0	1830	1890	1984	1682	550	1969	1668
Q Serve(g_s), s	8.5	0.0	12.4	7.1	0.0	4.3	8.5	28.6	2.3	3.7	19.6	2.4
Cycle Q Clear(g_c), s	12.8	0.0	12.4	19.5	0.0	4.3	8.5	28.6	2.3	15.0	19.6	2.4
Prop In Lane	1.00	0	0.67	1.00	0	0.42	1.00	4440	1.00	1.00	050	1.00
Lane Grp Cap(c), veh/h	355	0	462	201	0	482	420	1112	942	196	653	554
V/C Ratio(X)	0.44	0.00	0.69	0.50	0.00	0.27	0.82	0.82	0.12	0.16	0.84	0.14
Avail Cap(c_a), veh/h	355	0	462	201	0	482	453	1690	1432	346	1192	1010
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	27.3	0.0	25.2	33.9	0.0	22.2	16.1	13.6	7.8	26.8	23.5	17.8
Incr Delay (d2), s/veh	0.8	0.0	4.2	1.9	0.0	0.3	10.9	2.1	0.1	0.4	3.0	0.1
Initial Q Delay(d3),s/veh	0.0 2.3	0.0	0.0 5.0	0.0	0.0 0.0	0.0	0.0 4.0	0.0 9.6	0.0	0.0 0.5	0.0	0.0 0.8
%ile BackOfQ(50%),veh/In		0.0	5.0	1.8	0.0	1.7	4.0	9.0	0.6	0.5	8.2	0.0
Unsig. Movement Delay, s/veh	28.1	0.0	29.4	35.8	0.0	22.5	26.9	15.7	7.9	27.2	26.5	17.9
LnGrp Delay(d),s/veh LnGrp LOS	20.1 C	0.0 A	29.4 C	35.6 D	0.0 A	22.5 C	20.9 C	15.7 B	7.9 A	27.2 C	20.5 C	17.9 B
Approach Vol, veh/h	U	473	U	D	231	U	U	1370	A	U	654	D
· · · · ·		473 29.0			28.3			17.9			25.5	
Approach Delay, s/veh		•			•			_			•	
Approach LOS		C			С	•		В			С	
Timer - Assigned Phs	1	2		4		6		8				
Phs Duration (G+Y+Rc), s	17.4 * c 7	31.9 * c 7		26.7 * 6.7		49.3 * c 7		26.7				
Change Period (Y+Rc), s	* 6.7	* 6.7				* 6.7		* 6.7				
Max Green Setting (Gmax), s	* 12	* 46		* 20		* 65		* 20				
Max Q Clear Time (g_c+l1), s	10.5 0.2	21.6 3.6		14.8 1.0		30.6		21.5 0.0				
Green Ext Time (p_c), s	0.2	3.0		1.0		7.4		0.0				
Intersection Summary			<u> </u>									
HCM 6th Ctrl Delay			22.5									
HCM 6th LOS			С									
N1 /												

Notes

	٠	+	1	4	ł	•	1	t	1	4	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٢	f.		٦	T+		7	†	1	٦	^	1
Traffic Volume (veh/h)	32	33	211	72	55	16	153	353	49	15	493	51
Future Volume (veh/h)	32	33	211	72	55	16	153	353	49	15	493	51
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No	(No			No			No	
Adj Sat Flow, veh/h/ln	1969	1969	1969	1969	1969	1969	1969	1969	1969	1969	1969	1969
Adj Flow Rate, veh/h	50	45	160	95	80	29	187	415	66	22	560	67
Peak Hour Factor	0.64	0.74	0.85	0.76	0.69	0.55	0.82	0.85	0.74	0.67	0.88	0.76
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	344	84	300	259	307	111	365	1090	924	441	691	585
Arrive On Green	0.22	0.22	0.22	0.22	0.22	0.22	0.09	0.55	0.55	0.35	0.35	0.35
Sat Flow, veh/h	1284	379	1347	1177	1379	500	1875	1969	1668	914	1969	1668
Grp Volume(v), veh/h	50	0	205	95	0	109	187	415	66	22	560	67
Grp Sat Flow(s),veh/h/ln	1284	0	1726	1177	0	1879	1875	1969	1668	914	1969	1668
Q Serve(g_s), s	2.0	0.0	6.3	4.6	0.0	2.9	3.5	7.1	1.1	1.0	15.5	1.6
Cycle Q Clear(g_c), s	4.9	0.0	6.3	10.9	0.0	2.9	3.5	7.1	1.1	1.0	15.5	1.6
Prop In Lane	1.00		0.78	1.00		0.27	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	344	0	384	259	0	418	365	1090	924	441	691	585
V/C Ratio(X)	0.15	0.00	0.53	0.37	0.00	0.26	0.51	0.38	0.07	0.05	0.81	0.11
Avail Cap(c_a), veh/h	487	0	576	390	0	627	570	2126	1802	822	1512	1281
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	21.2	0.0	20.5	25.4	0.0	19.2	12.5	7.6	6.2	12.9	17.6	13.2
Incr Delay (d2), s/veh	0.2	0.0	1.2	0.9	0.0	0.3	1.1	0.2	0.0	0.0	2.4	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.5	0.0	2.2	1.2	0.0	1.1	1.1	1.9	0.2	0.2	5.8	0.5
Unsig. Movement Delay, s/veh	l											
LnGrp Delay(d),s/veh	21.4	0.0	21.7	26.2	0.0	19.6	13.6	7.8	6.2	13.0	20.0	13.2
LnGrp LOS	С	Α	С	С	Α	В	В	Α	Α	В	В	В
Approach Vol, veh/h		255			204			668			649	
Approach Delay, s/veh		21.6			22.7			9.3			19.1	
Approach LOS		С			С			А			В	
Timer - Assigned Phs	1	2		4		6		8				
Phs Duration (G+Y+Rc), s	12.2	27.7		20.0		39.9		20.0				
Change Period (Y+Rc), s	* 6.7	* 6.7		* 6.7		* 6.7		* 6.7				
Max Green Setting (Gmax), s	* 12	* 46		* 20		* 65		* 20				
Max Q Clear Time (g_c+I1), s	5.5	17.5		8.3		9.1		12.9				
Green Ext Time (p_c), s	0.2	3.6		0.9		2.5		0.4				
Intersection Summary												
HCM 6th Ctrl Delay			16.2									
HCM 6th LOS			В									
Notoo												

Notes

Movement	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	TR	L	TR	L	Т	R	L	Т	R	
Maximum Queue (ft)	71	364	150	130	91	158	51	161	456	247	
Average Queue (ft)	21	150	53	28	38	57	10	18	218	35	
95th Queue (ft)	54	292	116	79	73	108	34	84	379	134	
Link Distance (ft)		606		891		1088			855		
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	225		225		225		225	150		100	
Storage Blk Time (%)		6	0			0			26		
Queuing Penalty (veh)		3	0			0			21		

Intersection: 2: Site Drive & Golf Club Road

Movement

Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 3: Latson Road & Site Drive

Movement

Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)

Network Summary

Movement	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	TR	L	TR	L	Т	R	L	Т	R	
Maximum Queue (ft)	171	310	208	204	243	309	125	121	311	247	
Average Queue (ft)	64	115	77	58	108	162	22	23	163	32	
95th Queue (ft)	129	240	183	143	195	267	86	75	269	117	
Link Distance (ft)		606		891		1088			855		
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	225		225		225		225	150		100	
Storage Blk Time (%)	0	3	3	0	1	2			21		
Queuing Penalty (veh)	1	4	4	0	11	7			21		

Intersection: 2: Site Drive & Golf Club Drive

Movement

Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 3: Latson Road & Site Drive

Movement

Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)

Network Summary

Movement	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	TR	L	TR	L	Т	R	L	Т	R	
Maximum Queue (ft)	80	174	106	94	139	157	34	44	312	131	
Average Queue (ft)	20	68	42	31	59	62	10	11	152	22	
95th Queue (ft)	55	136	84	71	106	117	32	35	261	73	
Link Distance (ft)		606		891		1088			855		
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	225		225		225		225	150		100	
Storage Blk Time (%)						0			18		
Queuing Penalty (veh)						0			13		

Intersection: 2: Site Drive & Golf Club Road

Movement

Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 3: Latson Road & Site Drive

Movement

Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)

Network Summary

	٠	→	7	1	+	*	1	1	1	4	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	Þ		5	Þ		ሻ	†	1	٦	†	1
Traffic Volume (veh/h)	39	37	332	67	45	26	72	308	36	19	723	64
Future Volume (veh/h)	39	37	332	67	45	26	72	308	36	19	723	64
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	4004	No	4004	4050	No	1050	4000	No	4000	4000	No	4000
Adj Sat Flow, veh/h/ln	1984	1984	1984	1953	1953	1953	1922	1922	1922	1969	1969	1969
Adj Flow Rate, veh/h	48	46	317	85	57	33	82	350	41	20	777	69
Peak Hour Factor	0.81	0.81	0.81	0.79	0.79	0.79	0.88	0.88	0.88	0.93	0.93	0.93
Percent Heavy Veh, %	1	1	1	3	3	3	5	5	5	2	2	2
Cap, veh/h	370	55	376	141	291	169	238	1116	946	531	874	740
Arrive On Green	0.25	0.25	0.25	0.25	0.25	0.25	0.05	0.58	0.58	0.44	0.44	0.44
Sat Flow, veh/h	1317	217	1498	1011	1160	672	1830	1922	1629	993	1969	1668
Grp Volume(v), veh/h	48	0	363	85	0	90	82	350	41	20	777	69
Grp Sat Flow(s),veh/h/ln	1317	0	1715	1011	0	1832	1830	1922	1629	993	1969	1668
Q Serve(g_s), s	2.4	0.0	16.0	4.0	0.0	3.1	1.8	7.4	0.9	0.9	28.9	1.9
Cycle Q Clear(g_c), s	5.5	0.0	16.0	20.0	0.0	3.1	1.8	7.4	0.9	0.9	28.9	1.9
Prop In Lane	1.00	•	0.87	1.00	•	0.37	1.00	4440	1.00	1.00	074	1.00
Lane Grp Cap(c), veh/h	370	0	431	141	0	460	238	1116	946	531	874	740
V/C Ratio(X)	0.13	0.00	0.84	0.60	0.00	0.20	0.34	0.31	0.04	0.04	0.89	0.09
Avail Cap(c_a), veh/h	370	0	431	141	0	460	418	1562	1324	664	1137	964
HCM Platoon Ratio	1.00	1.00	1.00	1.00 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00 25.6	0.00 0.0	1.00 28.3	38.6	0.00 0.0	1.00 23.5	1.00 16.4	1.00 8.6	1.00 7.2	1.00 12.6	1.00 20.3	1.00 12.8
Uniform Delay (d), s/veh	25.0 0.2	0.0	20.3 14.1	30.0 7.0	0.0	23.5 0.2	0.9	0.0 0.2	7.Z 0.0	0.0	20.3 7.3	0.1
Incr Delay (d2), s/veh Initial Q Delay(d3),s/veh	0.2	0.0	0.0	7.0 0.0	0.0	0.2	0.9	0.2	0.0	0.0	7.3 0.0	0.1
%ile BackOfQ(50%),veh/ln	0.0	0.0	0.0 7.5	1.8	0.0	1.2	0.0	2.3	0.0	0.0	12.4	0.0
Unsig. Movement Delay, s/veh		0.0	7.5	1.0	0.0	1.2	0.0	2.5	0.2	0.2	12.4	0.0
LnGrp Delay(d),s/veh	25.8	0.0	42.4	45.6	0.0	23.7	17.3	8.7	7.2	12.6	27.6	12.9
LnGrp LOS	23.0 C	0.0 A	42.4 D	45.0 D	0.0 A	23.7 C	В	0.7 A	7.2 A	12.0 B	27.0 C	12.9 B
Approach Vol, veh/h		411		0	175	0	0	473	Λ	0	866	
Approach Delay, s/veh		40.4			34.3			10.1			26.1	
Approach LOS		40.4 D			04.0 C			B			20.1 C	
	4				U	0					U	
Timer - Assigned Phs Phs Duration (G+Y+Rc), s	10.9	42.0		4 26.7		<u>6</u> 52.9		8 26.7				
Change Period (Y+Rc), s	* 6.7	42.0 * 6.7		20.7 * 6.7		52.9 * 6.7		× 6.7				
Max Green Setting (Gmax), s	* 12	* 46		* 20		* 65		* 20				
Max Q Clear Time (g_c+I1), s	3.8	40 30.9		20 18.0		9.4		20				
Green Ext Time (p_c), s	0.1	30.9 4.5		0.4		9.4 2.0		22.0 0.0				
,	U. I	т.Ј		0.4		2.0		0.0				
Intersection Summary			00.0									
HCM 6th Ctrl Delay			26.0									
HCM 6th LOS			С									

Notes

	٠	→	7	1	+	•	1	Ť	1	4	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	f,		ሻ	Þ		٦	1	1	ሻ	†	7
Traffic Volume (veh/h)	118	81	215	87	66	48	321	852	102	29	499	69
Future Volume (veh/h)	118	81	215	87	66	48	321	852	102	29	499	69
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1969	1969	1969	1969	1969	1969	1984	1984	1984	1969	1969	1969
Adj Flow Rate, veh/h	157	108	220	102	78	56	353	936	112	33	561	78
Peak Hour Factor	0.75	0.75	0.75	0.85	0.85	0.85	0.91	0.91	0.91	0.89	0.89	0.89
Percent Heavy Veh, %	2	2	2	2	2	2	1	1	1	2	2	2
Cap, veh/h	346	150	306	188	277	199	420	1124	953	190	666	564
Arrive On Green	0.26	0.26	0.26	0.26	0.26	0.26	0.14	0.57	0.57	0.34	0.34	0.34
Sat Flow, veh/h	1256	578	1178	1052	1066	765	1890	1984	1682	538	1969	1668
Grp Volume(v), veh/h	157	0	328	102	0	134	353	936	112	33	561	78
Grp Sat Flow(s),veh/h/ln	1256	0	1757	1052	0	1831	1890	1984	1682	538	1969	1668
Q Serve(g_s), s	8.8	0.0	13.1	6.9	0.0	4.5	8.8	29.8	2.4	4.1	20.3	2.5
Cycle Q Clear(g_c), s	13.3	0.0	13.1	20.0	0.0	4.5	8.8	29.8	2.4	16.4	20.3	2.5
Prop In Lane	1.00		0.67	1.00		0.42	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	346	0	456	188	0	475	420	1124	953	190	666	564
V/C Ratio(X)	0.45	0.00	0.72	0.54	0.00	0.28	0.84	0.83	0.12	0.17	0.84	0.14
Avail Cap(c_a), veh/h	346	0	456	188	0	475	447	1666	1412	329	1175	996
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	28.1	0.0	26.0	35.3	0.0	22.8	16.2	13.7	7.8	27.6	23.6	17.7
Incr Delay (d2), s/veh	0.9	0.0	5.4	3.2	0.0	0.3	12.8	2.4	0.1	0.4	3.0	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	2.4	0.0	5.5	1.9	0.0	1.8	4.3	10.1	0.6	0.5	8.5	0.8
Unsig. Movement Delay, s/veh		0.0	04.4	00 F		00.4	00.4	40.4	7.0	00.4	00.0	47.0
LnGrp Delay(d),s/veh	29.0	0.0	31.4	38.5	0.0	23.1	29.1	16.1	7.8	28.1	26.6	17.8
LnGrp LOS	С	A	С	D	A	С	С	B	А	С	C	B
Approach Vol, veh/h		485			236			1401			672	
Approach Delay, s/veh		30.6			29.8			18.7			25.6	
Approach LOS		С			С			В			С	
Timer - Assigned Phs	1	2		4		6		8				
Phs Duration (G+Y+Rc), s	17.6	32.8		26.7		50.4		26.7				
Change Period (Y+Rc), s	* 6.7	* 6.7		* 6.7		* 6.7		* 6.7				
Max Green Setting (Gmax), s	* 12	* 46		* 20		* 65		* 20				
Max Q Clear Time (g_c+I1), s	10.8	22.3		15.3		31.8		22.0				
Green Ext Time (p_c), s	0.1	3.7		1.0		7.7		0.0				
Intersection Summary			00.4									
HCM 6th Ctrl Delay HCM 6th LOS			23.4									
HUM 6th LUS			С									

Notes

	۴	-	7	1	+	•	1	Ť	1	4	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	Þ		ሻ	Þ		۳	†	1	٦	†	1
Traffic Volume (veh/h)	47	50	267	73	45	30	173	508	86	23	589	43
Future Volume (veh/h)	47	50	267	73	45	30	173	508	86	23	589	43
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	4.00	1.00	1.00	4.00	1.00	1.00	4.00	1.00	1.00	4.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	4000	No	4000	4000	No	4000	4000	No	4000	4000	No	4000
Adj Sat Flow, veh/h/ln	1969	1969	1969	1969	1969	1969	1969	1969	1969	1969	1969	1969
Adj Flow Rate, veh/h	64	57	211	96	71	42	214	564	116	32	620	57
Peak Hour Factor	0.74	0.87	0.91	0.76	0.63	0.72	0.81	0.90	0.74	0.71	0.95	0.75
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	360	92	342	227	292	173	343	1104	936	383	732	621
Arrive On Green	0.25	0.25	0.25	0.25	0.25	0.25	0.10	0.56	0.56	0.37	0.37	0.37
Sat Flow, veh/h	1280	367	1358	1111	1159	686	1875	1969	1668	760	1969	1668
Grp Volume(v), veh/h	64	0	268	96	0	113	214	564	116	32	620	57
Grp Sat Flow(s),veh/h/ln	1280	0	1724	1111	0	1845	1875	1969	1668	760	1969	1668
Q Serve(g_s), s	3.0	0.0	9.8	6.0	0.0	3.5	4.7	12.6	2.3	2.0	20.6	1.6
Cycle Q Clear(g_c), s	6.5	0.0	9.8	15.8	0.0	3.5	4.7	12.6	2.3	2.0	20.6	1.6
Prop In Lane	1.00	0	0.79	1.00	0	0.37	1.00	1101	1.00	1.00	700	1.00
Lane Grp Cap(c), veh/h	360	0	434	227	0	465	343	1104	936	383	732	621
V/C Ratio(X)	0.18 396	0.00	0.62 482	0.42 258	0.00 0	0.24 516	0.62 479	0.51 1781	0.12 1509	0.08 590	0.85 1266	0.09 1073
Avail Cap(c_a), veh/h HCM Platoon Ratio	390 1.00	0 1.00	402 1.00	250 1.00	1.00	1.00	479 1.00	1.00	1.00	590 1.00	1200	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	23.9	0.00	23.7	30.7	0.00	21.3	15.1	9.7	7.4	14.7	20.6	14.6
Incr Delay (d2), s/veh	23.9 0.2	0.0	23.7	1.2	0.0	0.3	1.9	9.7 0.4	0.1	0.1	20.0	0.1
Initial Q Delay(d3),s/veh	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.1	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.0	0.0	3.7	1.5	0.0	1.3	1.6	3.8	0.0	0.0	8.2	0.0
Unsig. Movement Delay, s/veh		0.0	0.7	1.0	0.0	1.0	1.0	0.0	0.0	0.0	0.2	0.0
LnGrp Delay(d),s/veh	24.1	0.0	25.7	32.0	0.0	21.6	17.0	10.0	7.5	14.8	23.4	14.7
LnGrp LOS	24.1 C	A	20.7 C	C	A	21.0 C	В	В	A	В	20.4 C	B
Approach Vol, veh/h	<u> </u>	332	<u> </u>		209	0		894	7.		709	
Approach Delay, s/veh		25.4			26.4			11.4			22.3	
Approach LOS		20.4 C			20.4 C			В			22.0 C	
	4			٨	Ŭ	C					U	
Timer - Assigned Phs Phs Duration (G+Y+Rc), s	<u>1</u> 13.5	2 33.3		<u>4</u> 24.7		6 46.8		<u>8</u> 24.7				
Change Period (Y+Rc), s	* 6.7	* 6.7		× 6.7		40.0 * 6.7		× 6.7				
Max Green Setting (Gmax), s	* 12	* 46		* 20		* 65		* 20				
Max Q Clear Time (g_c+I1), s	6.7	22.6		20 11.8		14.6		17.8				
Green Ext Time (p_c), s	0.7	4.0		1.0		3.8		0.2				
. ,	0.0	-+.0		1.0		5.0		0.2				
Intersection Summary												
HCM 6th Ctrl Delay			18.6									
HCM 6th LOS			В									
Notoo												

Notes

Movement	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	TR	L	TR	L	Т	R	L	Т	R	
Maximum Queue (ft)	69	330	155	124	98	148	53	165	481	249	
Average Queue (ft)	22	146	55	27	38	59	10	20	223	41	
95th Queue (ft)	58	270	123	78	77	119	35	98	391	151	
Link Distance (ft)		606		891		1088			855		
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	225		225		225		225	150		100	
Storage Blk Time (%)		5	0						26		
Queuing Penalty (veh)		2	0						22		

Intersection: 2: Site Drive & Golf Club Road

Movement

Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 3: Latson Road & Site Drive

Movement

Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)

Network Summary

Movement	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	TR	L	TR	L	Т	R	L	Т	R	
Maximum Queue (ft)	224	370	189	197	252	334	48	74	313	214	
Average Queue (ft)	83	145	95	60	124	173	20	24	170	34	
95th Queue (ft)	180	305	210	155	216	286	46	57	280	112	
Link Distance (ft)		606		891		1088			855		
Upstream Blk Time (%)		0									
Queuing Penalty (veh)		0									
Storage Bay Dist (ft)	225		225		225		225	150		100	
Storage Blk Time (%)	2	6	4	0	1	2			22		
Queuing Penalty (veh)	7	9	5	0	9	11			22		

Intersection: 2: Site Drive & Golf Club Road

Movement

Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 3: Latson Road & Site Drive

Movement

Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)

Network Summary

Movement	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	TR	L	TR	L	Т	R	L	Т	R	
Maximum Queue (ft)	94	265	149	124	162	193	55	52	345	168	
Average Queue (ft)	26	107	56	28	69	92	17	15	192	22	
95th Queue (ft)	63	200	113	76	126	161	42	43	309	91	
Link Distance (ft)		606		891		1088			855		
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	225		225		225		225	150		100	
Storage Blk Time (%)		1				0			25		
Queuing Penalty (veh)		1				0			17		

Intersection: 2: Site Drive & Golf Club Road

Movement

Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 3: Latson Road & Site Drive

Movement

Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)

Network Summary

Appendix D – Phase I Build Conditions Data

Movement EBL EBT EBR WBL WBT WBL NBT NBR SBL SBT SBR Lane Configurations 1 3 329 66 45 25 77 301 35 18 708 66 Future Volume (veh/h) 41 38 329 66 45 25 77 301 35 18 708 66 Initial Q (Ob), veh 0		۲	→	7	1	+	*	1	1	1	4	ŧ	~
Traffic Volume (veh/h) 41 38 329 66 45 25 77 301 35 18 708 66 Future Volume (veh/h) 41 38 329 66 45 25 77 301 35 18 708 66 Parking Bus, Adj 1.00 1.03 0.03 0.33 0.33 0.33 0.35 5 5 2 2 2 2 2 2 2 2 2<				EBR			WBR						
Future Volume (veh/h) 41 38 329 66 45 25 77 301 35 18 708 66 Initial Q (Qb), veh 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>								-					
Initial Q(D), ven 0													
Pack-Birks Adj(A, pbT) 1.00 <	(,												
Parking Bus, Adj 1.00 1.0			0			0			0			0	
Work Zone Ön Åpproach No No No No No Adj Sat Flow, vehr/hin 1984 1984 1953 1953 1952 1922 1922 1922 1922 1922 1922 1922 1922 1922 1924 1969 1682 1922 1921 1921 1921 1921 1001 1969 1668 0474 1013 1834 1830 1922 1629 1001 1969 1668 02 100 1.00 1.00 1.			4.00			4.00			4.00			4.00	
Adj Sat Flow, veh/hin 1984 1984 1984 1953 1953 1922 1922 1922 1929 1969 1969 1969 Adj Flow Rate, veh/h 51 47 313 84 57 32 88 342 40 19 761 71 Peak Hour Factor 0.81 0.81 0.81 0.81 0.81 0.81 0.88 0.88 0.88 0.93		1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Adj Flow Rate, veh/h 51 47 313 84 57 32 88 342 40 19 761 71 Peak Hour Factor 0.81 0.81 0.81 0.81 0.79 0.79 0.79 0.88 0.88 0.88 0.93		4004		1001	4050		4050	4000		4000	4000		4000
Peak Hour Factor 0.81 0.81 0.81 0.71 0.79 0.79 0.88 0.88 0.88 0.93 0.93 0.93 Percent Heavy Veh, % 1 1 1 3 3 5 5 5 2 2 2 Cap, veh/h 376 57 379 148 298 167 243 1107 398 529 860 729 Arrive On Green 0.25 0.25 0.25 0.25 0.58 0.58 0.44 0.44 0.44 St Flow, veh/h 1318 0 716 1013 1175 660 1830 1922 1629 1001 1969 1668 Grp Volume(v), veh/h 1318 0 156 2.0 0.0 3.0 1.9 7.2 0.8 0.9 28.0 2.0 Cycle Q Clear(g.c), s 5.5 0.0 15.6 2.0 0.0 1.00 1.00 1.00 1.00 1.00 1.00	-												
Percent Heavy Veh, % 1 1 1 3 3 3 5 5 2 2 2 Cap, veh/h 376 57 379 148 298 167 243 1107 938 529 860 729 Arrive On Green 0.25 0.25 0.25 0.25 0.05 0.58 0.44													
Cap, veh/h 376 57 379 148 298 167 243 1107 938 529 860 729 Arrive On Green 0.25 0.25 0.25 0.25 0.25 0.25 0.58 0.58 0.58 0.44 0.44 0.44 Sat Flow, veh/h 51 0 360 84 0 89 88 342 40 19 761 711 Grp Sat Flow(s), veh/h/in 1318 0 1716 1013 0 1834 1830 1922 1629 1001 1969 1668 Q serve(g, s), s 2.5 0.0 15.6 4.4 0.0 3.0 1.9 7.2 0.8 0.9 28.0 2.0 2.0 Prop in Lane 1.00 0.0 1.00 1.													
Arrive On Green 0.25													
Sat Flow, veh/h 1318 224 1492 1013 1175 660 1830 1922 1629 1001 1969 1668 Grp Volume(V), veh/h 51 0 360 84 0 89 88 342 40 19 761 71 Grp Sat Flow(s), veh/h 1318 0 1716 1013 0 1834 1830 1922 1629 1001 1969 1668 Q Serve(g.s), s 2.5 0.0 15.6 2.0 0.0 3.0 1.9 7.2 0.8 0.9 2.8.0 2.0 Cycle Q Clear(g.c), veh/h 376 0 436 148 0 466 423 1107 938 529 860 729 VC Ratio(X) 0.14 0.00 0.83 0.57 0.00 0.10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 <td></td>													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
Grp Sat Flow(s), veh/h/ln 1318 0 1716 1013 0 1834 1830 1922 1629 1001 1969 1668 Q Serve(g. s), s 2.5 0.0 15.6 4.4 0.0 3.0 1.9 7.2 0.8 0.9 28.0 2.0 Cycle Q Clear(g. c), s 5.5 0.0 15.6 20.0 0.0 3.0 1.9 7.2 0.8 0.9 28.0 2.0 Prop In Lane 1.00 0.87 1.00 0.36 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 376 0 436 148 0 466 243 1107 938 529 860 729 V/C Ratio(X) 0.14 0.00 0.83 0.57 0.00 0.19 0.36 0.31 0.04 0.04 0.88 0.10 Avail Cap(c. a), veh/h 376 0 436 148 0 466 423 1578 1338 676 1150 974 Upstream Filter(1) 1.00 1.00 1.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
Prop In Lane 1.00 0.87 1.00 0.36 1.00 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 376 0 436 148 0 466 243 1107 938 529 860 729 V/C Ratio(X) 0.14 0.00 0.83 0.57 0.00 0.19 0.36 0.31 0.04 0.48 0.10 Avail Cap(c_a), veh/h 376 0 436 148 0 466 423 1578 1338 676 1150 974 HCM Platoon Ratio 1.00 1.0													
Lane Grp Cap(c), veh/h 376 0 436 148 0 466 243 1107 938 529 860 729 V/C Ratio(X) 0.14 0.00 0.83 0.57 0.00 0.19 0.36 0.31 0.04 0.04 0.88 0.10 Avail Cap(c_a), veh/h 376 0 436 148 0 466 423 1578 1338 676 1150 974 HCM Platon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0			0.0			0.0			1.2			28.0	
V/C Ratio (X) 0.14 0.00 0.83 0.57 0.00 0.19 0.36 0.31 0.04 0.04 0.88 0.10 Avail Cap(c_a), veh/h 376 0 436 148 0 466 423 1578 1338 676 1150 974 HCM Platoon Ratio 1.00	•		0			0			1107			000	
Avail Cap(c_a), veh/h 376 0 436 148 0 466 423 1578 1338 676 1150 974 HCM Platoon Ratio 1.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
HCM Platon Ratio 1.00 1.0													
Upstream Filter(I) 1.00 0.00 1													
Uniform Delay (d), s/veh 25.2 0.0 27.8 37.9 0.0 23.0 16.3 8.6 7.3 12.7 20.4 13.0 Incr Delay (d2), s/veh 0.2 0.0 12.4 5.0 0.0 0.2 0.9 0.2 0.0 0.0 6.7 0.1 Initial Q Delay(d3), s/veh 0.0 </td <td></td>													
Incr Delay (d2), s/veh 0.2 0.0 12.4 5.0 0.0 0.2 0.9 0.2 0.0 0.0 6.7 0.1 Initial Q Delay(d3),s/veh 0.0 <													
Initial Q Delay(d3),s/veh 0.0 <t< td=""><td>• • • •</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	• • • •												
%ile BackOfQ(50%),veh/ln 0.7 0.0 7.1 1.7 0.0 1.2 0.7 2.2 0.2 0.2 11.9 0.6 Unsig. Movement Delay, s/veh 25.4 0.0 40.1 43.0 0.0 23.2 17.2 8.8 7.3 12.8 27.1 13.1 LnGrp Delay(d),s/veh 25.4 0.0 40.1 43.0 0.0 23.2 17.2 8.8 7.3 12.8 27.1 13.1 LnGrp Delay(d),s/veh 25.4 0.0 40.1 43.0 0.0 23.2 17.2 8.8 7.3 12.8 27.1 13.1 LnGrp LOS C A D D A C B A B C B Approach Vol, veh/h 411 173 470 851 Approach 25.6 B C B C B C C B C C D C C C C S C S C S C S C C C C C C	,												
Unsig. Movement Delay, s/veh 25.4 0.0 40.1 43.0 0.0 23.2 17.2 8.8 7.3 12.8 27.1 13.1 LnGrp Dols C A D D A C B A A B C B Approach Vol, veh/h 411 173 470 851 Approach Delay, s/veh 38.3 32.8 10.2 25.6 Approach LOS D C B C B C B Timer - Assigned Phs 1 2 4 6 8 C C Timer - Assigned Phs 1 2 4 6 8 C C Timer - Assigned Phs 1 2 4 6 8 C C Timer - Assigned Phs 1 2 4 6 8 C C Timer - Assigned Phs 1 2 4 6.7 52.1 26.7 26.7 Change Period (Y+Rc), s 10.0 41.1 26.7 52.1 26.7 26.7 <	• • •												
LnGrp Delay(d),s/veh 25.4 0.0 40.1 43.0 0.0 23.2 17.2 8.8 7.3 12.8 27.1 13.1 LnGrp LOS C A D D A C B A A B C B Approach Vol, veh/h 411 173 470 851 Approach Delay, s/veh 38.3 32.8 10.2 25.6 Approach LOS D C B C B C B Timer - Assigned Phs 1 2 4 6 8 C C Timer - Assigned Phs 1 2 4 6 8 C C Timer - Assigned Phs 1 2 4 6 8 C C B C Max Green Setting (G+Y+Rc), s *10 41.1 26.7 52.1 26.7 C A A B C B C D D A C B C C B C C D C C C <td></td> <td>0.7</td> <td>0.0</td> <td>7.1</td> <td>1.7</td> <td>0.0</td> <td>1.2</td> <td>0.7</td> <td>2.2</td> <td>0.2</td> <td>0.2</td> <td>11.5</td> <td>0.0</td>		0.7	0.0	7.1	1.7	0.0	1.2	0.7	2.2	0.2	0.2	11.5	0.0
LnGrp LOS C A D D A C B A A B C B Approach Vol, veh/h 411 173 470 851 Approach Delay, s/veh 38.3 32.8 10.2 25.6 Approach LOS D C B C P Timer - Assigned Phs 1 2 4 6 8 2 Timer - Assigned Phs 1 2 4 6 8 2		25.4	0.0	40 1	43.0	0.0	23.2	17 2	8.8	73	12.8	27 1	13.1
Approach Vol, veh/h 411 173 470 851 Approach Delay, s/veh 38.3 32.8 10.2 25.6 Approach LOS D C B C Timer - Assigned Phs 1 2 4 6 8 Phs Duration (G+Y+Rc), s 11.0 41.1 26.7 52.1 26.7 Change Period (Y+Rc), s *6.7 *6.7 *6.7 *6.7 *6.7 Max Green Setting (Gmax), s *12 *46 *20 *65 *20 Max Q Clear Time (g_c+I1), s 3.9 30.0 17.6 9.2 22.0 Green Ext Time (p_c), s 0.1 4.5 0.5 1.9 0.0 Intersection Summary 40.6 45.2 45.2 45.2 45.2													
Approach Delay, s/veh 38.3 32.8 10.2 25.6 Approach LOS D C B C Timer - Assigned Phs 1 2 4 6 8 Phs Duration (G+Y+Rc), s 11.0 41.1 26.7 52.1 26.7 Change Period (Y+Rc), s * 6.7 * 6.7 * 6.7 * 6.7 * 6.7 Max Green Setting (Gmax), s * 12 * 46 * 20 * 65 * 20 Max Q Clear Time (g_c+I1), s 3.9 30.0 17.6 9.2 22.0 Green Ext Time (p_c), s 0.1 4.5 0.5 1.9 0.0 Intersection Summary 40.4 40.5 40.5 40.5 40.5 40.5 HCM 6th Ctrl Delay 25.2 22.2 40.5 40.5 40.5 40.5 40.5		<u> </u>											
Approach LOS D C B C Timer - Assigned Phs 1 2 4 6 8 Phs Duration (G+Y+Rc), s 11.0 41.1 26.7 52.1 26.7 Change Period (Y+Rc), s *6.7 *6.7 *6.7 *6.7 Max Green Setting (Gmax), s *12 *46 *20 *65 *20 Max Q Clear Time (g_c+I1), s 3.9 30.0 17.6 9.2 22.0 Green Ext Time (p_c), s 0.1 4.5 0.5 1.9 0.0 Intersection Summary 25.2 25.2 1.9 1.0													
Timer - Assigned Phs 1 2 4 6 8 Phs Duration (G+Y+Rc), s 11.0 41.1 26.7 52.1 26.7 Change Period (Y+Rc), s * 6.7 * 6.7 * 6.7 * 6.7 Max Green Setting (Gmax), s * 12 * 46 * 20 * 65 * 20 Max Q Clear Time (g_c+I1), s 3.9 30.0 17.6 9.2 22.0 Green Ext Time (p_c), s 0.1 4.5 0.5 1.9 0.0 Intersection Summary 25.2 22.2 22.0 22.0			_			•			_			•	
Phs Duration (G+Y+Rc), s 11.0 41.1 26.7 52.1 26.7 Change Period (Y+Rc), s * 6.7 * 6.7 * 6.7 * 6.7 Max Green Setting (Gmax), s * 12 * 46 * 20 * 65 * 20 Max Q Clear Time (g_c+I1), s 3.9 30.0 17.6 9.2 22.0 Green Ext Time (p_c), s 0.1 4.5 0.5 1.9 0.0 Intersection Summary 40.4 40.5 40.5 40.5 40.5 HCM 6th Ctrl Delay 25.2 40.5 40.5 40.5 40.5		1			٨	Ű	6					Ŭ	
Change Period (Y+Rc), s * 6.7 * 6.7 * 6.7 * 6.7 Max Green Setting (Gmax), s * 12 * 46 * 20 * 65 * 20 Max Q Clear Time (g_c+I1), s 3.9 30.0 17.6 9.2 22.0 Green Ext Time (p_c), s 0.1 4.5 0.5 1.9 0.0 Intersection Summary HCM 6th Ctrl Delay 25.2		11.0											
Max Green Setting (Gmax), s * 12 * 46 * 20 * 65 * 20 Max Q Clear Time (g_c+I1), s 3.9 30.0 17.6 9.2 22.0 Green Ext Time (p_c), s 0.1 4.5 0.5 1.9 0.0 Intersection Summary HCM 6th Ctrl Delay 25.2													
Max Q Clear Time (g_c+l1), s 3.9 30.0 17.6 9.2 22.0 Green Ext Time (p_c), s 0.1 4.5 0.5 1.9 0.0 Intersection Summary 25.2 25.2 25.2 25.2 25.2													
Green Ext Time (p_c), s 0.1 4.5 0.5 1.9 0.0 Intersection Summary													
Intersection Summary HCM 6th Ctrl Delay 25.2													
HCM 6th Ctrl Delay 25.2	. ,	0.1	T.U		0.0		1.0		0.0				
				05.0									
				U									

Notes

Intersection	

Int Delay, s/veh	0.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	•	1	1	1	Y	
Traffic Vol, veh/h	401	11	10	178	7	7
Future Vol, veh/h	401	11	10	178	7	7
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	50	150	-	0	-
Veh in Median Storage	,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	81	81	87	87	92	92
Heavy Vehicles, %	1	0	0	3	0	0
Mvmt Flow	495	14	11	205	8	8

Major/Minor	Major1	Ν	/lajor2	Μ	linor1	
Conflicting Flow All	0	0	509	0	722	495
Stage 1	-	-	-	-	495	-
Stage 2	-	-	-	-	227	-
Critical Hdwy	-	-	4.1	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1066	-	397	579
Stage 1	-	-	-	-	617	-
Stage 2	-	-	-	-	815	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuve	r -	-	1066	-	393	579
Mov Cap-2 Maneuve	r -	-	-	-	393	-
Stage 1	-	-	-	-	617	-
Stage 2	-	-	-	-	807	-

Approach	EB	WB	NB
HCM Control Delay, s	0	0.4	13
HCM LOS			В

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	468	-	-	1066	-
HCM Lane V/C Ratio	0.033	-	-	0.011	-
HCM Control Delay (s)	13	-	-	8.4	-
HCM Lane LOS	В	-	-	Α	-
HCM 95th %tile Q(veh)	0.1	-	-	0	-

HCM 6th Signalized Intersection Summary 1: Latson Road & Golf Club Road

	٠	→	7	1	+	*	1	1	1	4	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1.	0.10	1	1.		7	•	1	7	100	1
Traffic Volume (veh/h)	120	80	218	85	66	47	321	834	99	28	488	70
Future Volume (veh/h)	120	80	218	85	66	47	321	834	99	28	488	70
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1 00	1.00 1.00	1.00 1.00	1 00	1.00 1.00	1.00	1 00	1.00 1.00	1.00 1.00	1 00	1.00
Parking Bus, Adj Work Zone On Approach	1.00	1.00 No	1.00	1.00	1.00 No	1.00	1.00	1.00 No	1.00	1.00	1.00 No	1.00
Adj Sat Flow, veh/h/ln	1969	1969	1969	1969	1969	1969	1984	1984	1984	1969	1969	1969
Adj Flow Rate, veh/h	160	1909	224	100	78	55	353	916	109	31	548	79
Peak Hour Factor	0.75	0.75	0.75	0.85	0.85	0.85	0.91	0.91	0.91	0.89	0.89	0.89
Percent Heavy Veh, %	2	2	2	0.05	2	0.05	0.51	0.51	0.51	0.03	0.03	0.03
Cap, veh/h	351	149	311	189	282	199	424	1116	946	197	653	553
Arrive On Green	0.26	0.26	0.26	0.26	0.26	0.26	0.14	0.56	0.56	0.33	0.33	0.33
Sat Flow, veh/h	1257	567	1188	1049	1075	758	1890	1984	1682	550	1969	1668
Grp Volume(v), veh/h	160	0	331	100	0	133	353	916	109	31	548	79
Grp Sat Flow(s),veh/h/ln	1257	Õ	1755	1049	0	1832	1890	1984	1682	550	1969	1668
Q Serve(g_s), s	8.9	0.0	13.1	6.9	0.0	4.4	8.8	28.6	2.3	3.7	19.7	2.5
Cycle Q Clear(g_c), s	13.3	0.0	13.1	20.0	0.0	4.4	8.8	28.6	2.3	14.7	19.7	2.5
Prop In Lane	1.00		0.68	1.00		0.41	1.00		1.00	1.00	-	1.00
Lane Grp Cap(c), veh/h	351	0	460	189	0	480	424	1116	946	197	653	553
V/C Ratio(X)	0.46	0.00	0.72	0.53	0.00	0.28	0.83	0.82	0.12	0.16	0.84	0.14
Avail Cap(c_a), veh/h	351	0	460	189	0	480	451	1683	1426	346	1187	1006
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	27.7	0.0	25.6	34.9	0.0	22.4	16.1	13.6	7.8	26.7	23.6	17.9
Incr Delay (d2), s/veh	0.9	0.0	5.4	2.7	0.0	0.3	12.0	2.1	0.1	0.4	3.0	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.4	0.0	5.4	1.8	0.0	1.7	4.3	9.6	0.6	0.5	8.2	0.9
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	28.6	0.0	31.0	37.6	0.0	22.7	28.2	15.6	7.9	27.1	26.6	18.0
LnGrp LOS	С	A	С	D	A	С	С	В	A	С	С	В
Approach Vol, veh/h		491			233			1378			658	
Approach Delay, s/veh		30.2			29.1			18.2			25.6	
Approach LOS		С			С			В			С	
Timer - Assigned Phs	1	2		4		6		8				
Phs Duration (G+Y+Rc), s	17.6	32.0		26.7		49.6		26.7				
Change Period (Y+Rc), s	* 6.7	* 6.7		* 6.7		* 6.7		* 6.7				
Max Green Setting (Gmax), s	* 12	* 46		* 20		* 65		* 20				
Max Q Clear Time (g_c+l1), s	10.8	21.7		15.3		30.6		22.0				
Green Ext Time (p_c), s	0.1	3.6		1.0		7.4		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			23.0									
HCM 6th LOS			С									

Notes

Int		rc	0	\mathbf{n}	1	2	n
	ιC	rs		6		U	

0.6					
EBT	EBR	WBL	WBT	NBL	NBR
•	1	1	1	Y	
405	12	11	446	15	13
405	12	11	446	15	13
0	0	0	0	0	0
Free	Free	Free	Free	Stop	Stop
-	None	-	None	-	None
-	50	150	-	0	-
,# 0	-	-	0	0	-
0	-	-	0	0	-
75	75	90	90	92	92
2	0	0	1	0	0
540	16	12	496	16	14
	EBT 405 405 405 0 Free - - ,# 0 0 75 2	EBT EBR 405 12 405 12 0 0 Free Free - None - 50 ,# 0 - 0 - 75 75 2 0	EBT EBR WBL ↑ ↑ ↑ 405 12 11 405 12 11 0 0 0 Free Free Free - None - - 50 150 ,# 0 - - 75 75 90 2 0 0	EBT EBR WBL WBT ↑ ↑ ↑ ↑ 405 12 11 446 405 12 11 446 0 0 0 0 Free Free Free Free - None - None - 50 150 - ,# 0 - - 0 75 75 90 90 2 2 0 0 1 1	EBT EBR WBL WBT NBL

Major/Minor	Major1	ľ	Major2	Ν	/linor1		
Conflicting Flow All	0	0	556	0	1060	540	
Stage 1	-	-	-	-	540	-	
Stage 2	-	-	-	-	520	-	
Critical Hdwy	-	-	4.1	-	6.4	6.2	
Critical Hdwy Stg 1	-	-	-	-	5.4	-	
Critical Hdwy Stg 2	-	-	-	-	5.4	-	
Follow-up Hdwy	-	-	2.2	-	3.5	3.3	
Pot Cap-1 Maneuver	-	-	1025	-	250	546	
Stage 1	-	-	-	-	588	-	
Stage 2	-	-	-	-	601	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuve	r -	-	1025	-	247	546	
Mov Cap-2 Maneuve	r -	-	-	-	247	-	
Stage 1	-	-	-	-	588	-	
Stage 2	-	-	-	-	594	-	

Approach	EB	WB	NB
HCM Control Delay, s	0	0.2	17
HCM LOS			С

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	331	-	-	1025	-
HCM Lane V/C Ratio	0.092	-	-	0.012	-
HCM Control Delay (s)	17	-	-	8.6	-
HCM Lane LOS	С	-	-	Α	-
HCM 95th %tile Q(veh)	0.3	-	-	0	-

	≁	+	1	4	ł	*	1	1	1	*	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	1×		٦	₽.		٦	1	1	٦	†	1
Traffic Volume (veh/h)	36	34	219	72	61	16	189	353	49	15	493	69
Future Volume (veh/h)	36	34	219	72	61	16	189	353	49	15	493	69
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	4 00	1.00	1.00	4.00	1.00	1.00	4 00	1.00	1.00	4.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	1969	No 1969	1969	1969	No 1969	1969	1969	No 1969	1969	1060	No 1969	1969
Adj Sat Flow, veh/h/ln	65	49	1969	1969 95	1969	29	310	415	1909 66	1969 22	560	130
Adj Flow Rate, veh/h Peak Hour Factor	0.55	49 0.70	0.79	95 0.76	0.60	29 0.55	0.61	415 0.85	0.74	22 0.67	0.88	0.53
	0.55	0.70	0.79	0.70	0.00	0.55	0.01	0.85	0.74	0.07	0.00	0.55
Percent Heavy Veh, % Cap, veh/h	326	2 85	2 316	236	2 343	2 97	413	ے 1127	2 955	2 419	677	2 574
Arrive On Green	0.23	0.23	0.23	0.23	0.23	0.23	0.13	0.57	955 0.57	0.34	0.34	0.34
Sat Flow, veh/h	0.23 1259	0.23 366	0.23 1359	0.23 1149	0.23 1474	0.23 419	1875	1969	1668	0.34 914	0.34 1969	0.34 1668
	65											
Grp Volume(v), veh/h		0	231	95	0	131	310	415	66 1669	22	560	130
Grp Sat Flow(s),veh/h/ln	1259	0	1724	1149	0	1893	1875	1969	1668	914	1969	1668
Q Serve(g_s), s	3.1 7.0	0.0 0.0	8.2 8.2	5.5 13.7	0.0 0.0	3.9	6.8 6.8	7.8 7.8	1.2 1.2	1.1 1.1	17.9	3.8 3.8
Cycle Q Clear(g_c), s	7.0 1.00	0.0	0.2 0.79	1.00	0.0	3.9 0.22	0.0 1.00	1.0	1.2	1.00	17.9	3.0 1.00
Prop In Lane Lane Grp Cap(c), veh/h	326	0	401	236	0	0.22 440	413	1127	955	419	677	574
V/C Ratio(X)	0.20	0.00	401 0.58	0.40	0.00	0.30	0.75	0.37	955 0.07	0.05	0.83	0.23
Avail Cap(c_a), veh/h	399	0.00	502	303	0.00	0.30 551	495	1853	1570	716	1317	1116
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	24.6	0.00	23.4	29.4	0.00	21.7	14.3	8.0	6.5	15.2	20.7	16.0
Incr Delay (d2), s/veh	0.3	0.0	1.3	1.1	0.0	0.4	5.2	0.0	0.0	0.1	20.7	0.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.2
%ile BackOfQ(50%),veh/In	0.0	0.0	3.0	1.4	0.0	1.5	2.6	2.2	0.0	0.2	7.2	1.2
Unsig. Movement Delay, s/veh		0.0	0.0	1.4	0.0	1.0	2.0	2.2	0.0	0.2	1.2	1.2
LnGrp Delay(d),s/veh	24.9	0.0	24.7	30.5	0.0	22.1	19.5	8.2	6.6	15.2	23.3	16.2
LnGrp LOS	C	A	C	C	A	C	B	A	A	B	20.0 C	B
Approach Vol, veh/h		296			226			791			712	
Approach Delay, s/veh		24.7			25.7			12.5			21.8	
Approach LOS		C			C			н <u>2.</u> 0			C 21.0	
Timer - Assigned Phs	1	2		Λ	Ŭ	6		8			Ū	
Phs Duration (G+Y+Rc), s	15.7	30.3		<u>4</u> 22.7		46.1		22.7				
Change Period (Y+Rc), s	* 6.7	* 6.7		* 6.7		* 6.7		* 6.7				
Max Green Setting (Gmax), s	* 12	* 46		* 20		* 65		* 20				
Max Q Clear Time (g_c+l1), s	8.8	19.9		10.2		9.8		15.7				
Green Ext Time (p_c), s	0.0	3.7		1.0		2.5		0.3				
. ,	0.0	0.1		1.0		2.0		0.0				
Intersection Summary			40.0									
HCM 6th Ctrl Delay			19.0									
HCM 6th LOS			В									
NL (

Notes

Intersection							
Int Delay, s/veh	2.2						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	1	1	۲	1	Y		

Traffic Vol, veh/h	276	61	60	259	12	13
Future Vol, veh/h	276	61	60	259	12	13
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	50	150	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	80	45	45	78	40	40
Heavy Vehicles, %	2	0	0	2	0	0
Mvmt Flow	345	136	133	332	30	33

Major/Minor	Major1	Ν	Major2	Μ	linor1	
Conflicting Flow All	0	0	481	0	943	345
Stage 1	-	-	-	-	345	-
Stage 2	-	-	-	-	598	-
Critical Hdwy	-	-	4.1	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1092	-	294	702
Stage 1	-	-	-	-	722	-
Stage 2	-	-	-	-	553	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	r -	-	1092	-	258	702
Mov Cap-2 Maneuver	r -	-	-	-	258	-
Stage 1	-	-	-	-	722	-
Stage 2	-	-	-	-	486	-

Approach	EB	WB	NB
HCM Control Delay, s	0	2.5	16.2
HCM LOS			С

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	384	-	-	1092	-
HCM Lane V/C Ratio	0.163	-	-	0.122	-
HCM Control Delay (s)	16.2	-	-	8.8	-
HCM Lane LOS	С	-	-	А	-
HCM 95th %tile Q(veh)	0.6	-	-	0.4	-

	٠	→	7	1	+	*	1	Ť	1	4	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	1.		٦	1+		٦	1	1	1	1	1
Traffic Volume (veh/h)	51	39	249	72	56	16	160	353	49	15	493	55
Future Volume (veh/h)	51	39	249	72	56	16	160	353	49	15	493	55
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	4.00	1.00	1.00	4 0 0	1.00	1.00	4.00	1.00	1.00	4.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	4000	No	4000	4000	No	4000	1000	No	1000	1000	No	4000
Adj Sat Flow, veh/h/ln	1969	1969	1969	1969	1969	1969	1969	1969	1969	1969	1969 560	1969
Adj Flow Rate, veh/h	104	61 0.64	249 0.70	95 0.76	90 0.62	29 0.55	246	415 0.85	66 0.74	22 0.67		100
Peak Hour Factor	0.49 2		0.70	0.76	0.62		0.65 2	0.85	0.74	0.67	0.88 2	0.55
Percent Heavy Veh, %	∠ 386	2 93	2 378	221	2 391	2 126	2 364	ے 1066	2 903	2 410	ے 668	2 566
Cap, veh/h Arrive On Green	0.27	93 0.27	0.27	0.27	0.27	0.27	0.11	0.54	903 0.54	0.34	0.34	0.34
Sat Flow, veh/h	0.27 1273	338	1382	1069	0.27 1426	460	1875	0.54 1969	0.54 1668	0.34 914	0.34 1969	0.34 1668
Grp Volume(v), veh/h	104	0	310	95	0	119	246	415	66 1669	22	560	100
Grp Sat Flow(s),veh/h/ln	1273	0	1720	1069	0	1886	1875	1969	1668	914 1.2	1969	1668
Q Serve(g_s), s	5.0 8.5	0.0	11.6 11.6	6.3 17.8	0.0 0.0	3.5 3.5	5.7 5.7	8.9 8.9	1.4	1.2 1.2	19.0 19.0	3.1 3.1
Cycle Q Clear(g_c), s Bran In Lana	o.5 1.00	0.0	0.80	17.0	0.0	5.5 0.24	5.7 1.00	0.9	1.4 1.00	1.2	19.0	
Prop In Lane	386	0	0.60 471	221	0	0.24 516	1.00 364	1066	903	410	668	1.00 566
Lane Grp Cap(c), veh/h V/C Ratio(X)	0.27	0.00	0.66	0.43	0.00	0.23	0.68	0.39	903 0.07	0.05	0.84	0.18
Avail Cap(c_a), veh/h	388	0.00	475	224	0.00	520	469	1757	1489	679	1249	1059
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1409	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	23.7	0.00	23.3	31.2	0.00	20.4	15.6	9.7	7.9	16.2	22.1	16.8
Incr Delay (d2), s/veh	0.4	0.0	3.3	1.3	0.0	0.2	2.6	0.2	0.0	0.1	2.9	0.1
Initial Q Delay(d3),s/veh	0.4	0.0	0.0	0.0	0.0	0.2	0.0	0.2	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.4	0.0	4.5	1.5	0.0	1.4	2.1	2.8	0.0	0.0	7.8	1.0
Unsig. Movement Delay, s/veh		0.0	4.0	1.0	0.0	1.4	2.1	2.0	0.4	0.2	1.0	1.0
LnGrp Delay(d),s/veh	24.1	0.0	26.6	32.5	0.0	20.6	18.2	9.9	8.0	16.3	25.0	17.0
LnGrp LOS	C	A	20.0 C	C	A	20.0 C	B	A	A	B	20.0 C	B
Approach Vol, veh/h		414			214			727			682	
Approach Delay, s/veh		26.0			25.9			12.5			23.5	
Approach LOS		C			C			B			C	
Timer - Assigned Phs	1	2		4	•	6		8			•	
Phs Duration (G+Y+Rc), s	14.6	31.3		26.6		45.9		26.6				
Change Period (Y+Rc), s	* 6.7	* 6.7		* 6.7		* 6.7		* 6.7				
Max Green Setting (Gmax), s	* 12	* 46		* 20		* 65		* 20				
Max Q Clear Time (g c+l1), s	7.7	21.0		13.6		10.9		19.8				
Green Ext Time (p_c), s	0.3	3.6		1.1		2.5		0.0				
u = 7:	0.0	0.0		1.1		2.0		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			20.4									
HCM 6th LOS			С									
No.4.												

Notes

Int	n	20	∩tı	on
		SE		CHI
		~~	•••	••••

Int Delay, s/veh	7.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1	1	1	•	Y	
Traffic Vol, veh/h	276	12	12	259	62	63
Future Vol, veh/h	276	12	12	259	62	63
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	50	150	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	75	45	45	90	40	40
Heavy Vehicles, %	2	0	0	1	0	0
Mvmt Flow	368	27	27	288	155	158

Major/Minor	Major1	Ν	Major2	Ν	linor1		
Conflicting Flow All	0	0	395	0	710	368	
Stage 1	-	-	-	-	368	-	
Stage 2	-	-	-	-	342	-	
Critical Hdwy	-	-	4.1	-	6.4	6.2	
Critical Hdwy Stg 1	-	-	-	-	5.4	-	
Critical Hdwy Stg 2	-	-	-	-	5.4	-	
Follow-up Hdwy	-	-	2.2	-	3.5	3.3	
Pot Cap-1 Maneuver	-	-	1175	-	403	682	
Stage 1	-	-	-	-	704	-	
Stage 2	-	-	-	-	724	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuver	r -	-	1175	-	394	682	
Mov Cap-2 Maneuver	r -	-	-	-	394	-	
Stage 1	-	-	-	-	704	-	
Stage 2	-	-	-	-	707	-	

Approach	EB	WB	NB
HCM Control Delay, s	0	0.7	23.4
HCM LOS			С

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	501	-	-	1175	-
HCM Lane V/C Ratio	0.624	-	-	0.023	-
HCM Control Delay (s)	23.4	-	-	8.1	-
HCM Lane LOS	С	-	-	А	-
HCM 95th %tile Q(veh)	4.2	-	-	0.1	-

Movement	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	TR	L	TR	L	Т	R	L	Т	R	
Maximum Queue (ft)	81	279	139	141	93	147	35	111	468	250	
Average Queue (ft)	23	126	52	30	42	61	7	15	215	36	
95th Queue (ft)	58	236	112	86	74	119	27	66	371	136	
Link Distance (ft)		606		891		1088			855		
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	225		225		225		225	150		100	
Storage Blk Time (%)		2							26	0	
Queuing Penalty (veh)		1							22	0	

Intersection: 2: Site Drive & Golf Club Road

Movement	WB	NB
Directions Served	L	LR
Maximum Queue (ft)	28	27
Average Queue (ft)	4	9
95th Queue (ft)	19	28
Link Distance (ft)		413
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)	150	
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 3: Latson Road & Site Drive

lovement	
Directions Served	
laximum Queue (ft)	
werage Queue (ft)	
5th Queue (ft)	
ink Distance (ft)	
Jpstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Network Summary

Movement	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	TR	L	TR	L	Т	R	L	Т	R	
Maximum Queue (ft)	161	290	228	236	280	294	70	75	383	210	
Average Queue (ft)	74	115	85	61	121	160	23	25	182	37	
95th Queue (ft)	142	237	217	157	220	253	52	59	302	131	
Link Distance (ft)		606		891		1088			855		
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	225		225		225		225	150		100	
Storage Blk Time (%)		3	8	0	2	2			26		
Queuing Penalty (veh)		4	9	0	20	7			25		

Intersection: 2: Site Drive & Golf Club Road

Movement	WB	NB
Directions Served	L	LR
Maximum Queue (ft)	28	49
Average Queue (ft)	4	14
95th Queue (ft)	19	36
Link Distance (ft)		413
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)	150	
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 3: Latson Road & Site Drive

<i>N</i> ovement	
Directions Served	
<i>I</i> laximum Queue (ft)	
Average Queue (ft)	
95th Queue (ft)	
ink Distance (ft)	
Jpstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Network Summary

Movement	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	TR	L	TR	L	Т	R	L	Т	R	
Maximum Queue (ft)	87	172	116	108	198	144	36	40	326	184	
Average Queue (ft)	22	73	43	27	76	64	10	11	157	30	
95th Queue (ft)	63	142	94	73	152	121	32	37	273	98	
Link Distance (ft)		606		891		1088			855		
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	225		225		225		225	150		100	
Storage Blk Time (%)					0				19	0	
Queuing Penalty (veh)					1				19	0	

Intersection: 2: Site Drive & Golf Club Road

Movement	EB	WB	NB
Directions Served	R	L	LR
Maximum Queue (ft)	4	53	37
Average Queue (ft)	0	12	12
95th Queue (ft)	3	40	32
Link Distance (ft)			413
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)	50	150	
Storage Blk Time (%)			
Queuing Penalty (veh)			

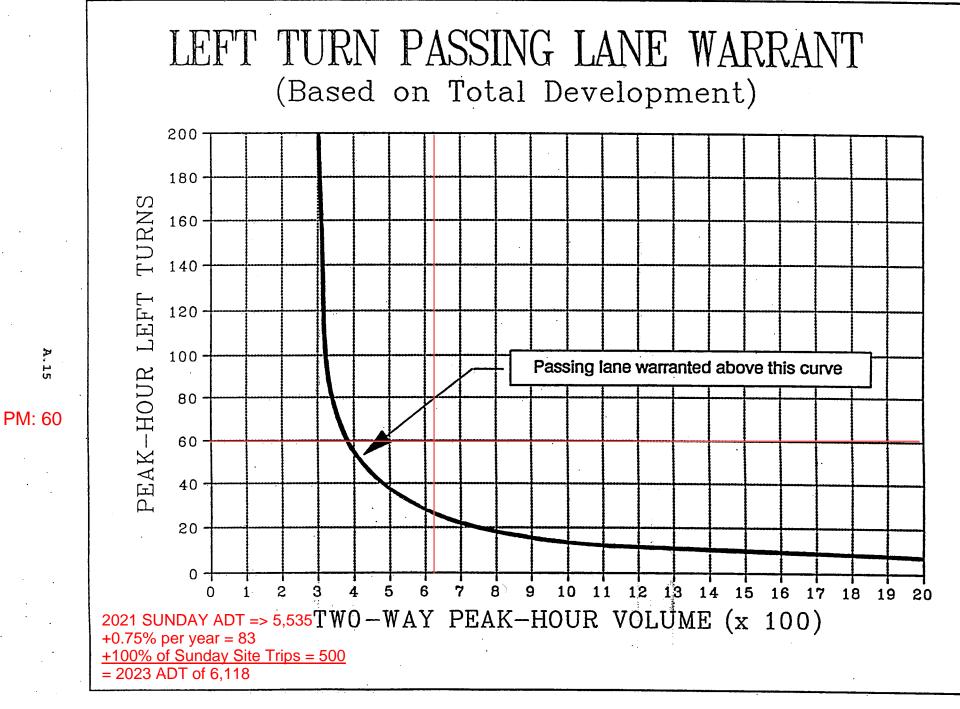
Intersection: 3: Latson Road & Site Drive

Movement
Directions Served
Maximum Queue (ft)
Average Queue (ft)
95th Queue (ft)
Link Distance (ft)
Upstream Blk Time (%)
Queuing Penalty (veh)
Storage Bay Dist (ft)
Storage Blk Time (%)
Queuing Penalty (veh)

Network Summary

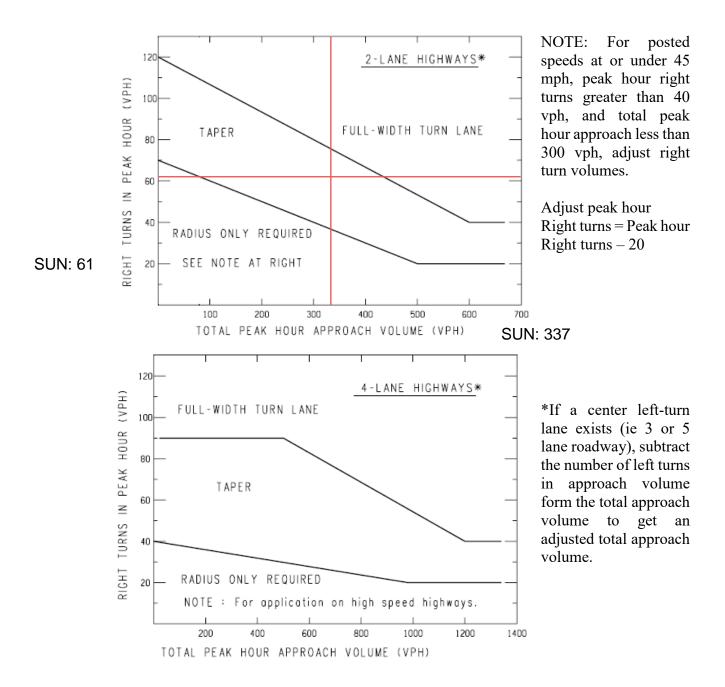
Movement	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	TR	L	TR	L	Т	R	L	Т	R	
Maximum Queue (ft)	114	236	200	165	143	161	42	44	301	210	
Average Queue (ft)	28	85	61	31	61	68	10	10	158	30	
95th Queue (ft)	77	176	165	93	119	127	32	34	271	111	
Link Distance (ft)		606		891		1088			855		
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	225		225		225		225	150		100	
Storage Blk Time (%)		1	4						19		
Queuing Penalty (veh)		1	4						14		

Intersection: 2: Site Drive & Golf Club Road


Movement	WB	NB
Directions Served	L	LR
Maximum Queue (ft)	30	168
Average Queue (ft)	3	40
95th Queue (ft)	17	111
Link Distance (ft)		413
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)	150	
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 3: Latson Road & Site Drive

ovement
irections Served
aximum Queue (ft)
verage Queue (ft)
5th Queue (ft)
nk Distance (ft)
pstream Blk Time (%)
ueuing Penalty (veh)
orage Bay Dist (ft)
orage Blk Time (%)
ueuing Penalty (veh)


Network Summary

GOLF CLUB ROAD & SITE DRIVE LEFT-TURN LANE WARRANT - PHASE I

A.15

GOLF CLUB ROAD & SITE DRIVE RIGHT-TURN LANE WARRANT - PHASE I

Sample Problem: The Design Speed is 55 mph. The Peak Hour Approach Volume is 300 vph. The Number of Right Turns in the Peak Hous is 100 vph. Determine if a right turn lane is recommended.

Solution: Figure indicates that the intersection of 300 vph and 100 vph is located above the upper trend line; thus, a right-turn lane may be recommended.

Appendix E – Phase II Alternative A Build Conditions Data

	٠	+	1	4	Ļ	•	1	Ť	1	*	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	Þ		٦	Þ		٦	†	1	7	†	1
Traffic Volume (veh/h)	43	38	340	67	47	26	85	308	36	19	723	70
Future Volume (veh/h)	43	38	340	67	47	26	85	308	36	19	723	70
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	4.00	1.00	1.00	4.00	1.00	1.00	4.00	1.00	1.00	4.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	4004	No	4004	4050	No	4050	4000	No	4000	4000	No	4000
Adj Sat Flow, veh/h/ln	1984	1984	1984	1953	1953	1953	1922	1922	1922	1969	1969	1969
Adj Flow Rate, veh/h	53	47	327	85	59	33	97	350	41	20	777	75
Peak Hour Factor	0.81	0.81	0.81	0.79	0.79	0.79	0.88	0.88	0.88	0.93	0.93	0.93
Percent Heavy Veh, %	1	1	1 275	3	3	3	5	5	5	2	2	2
Cap, veh/h	367	54	375	131	294	165	242	1120	949	530	873	740
Arrive On Green	0.25	0.25	0.25	0.25	0.25	0.25	0.06	0.58	0.58	0.44	0.44	0.44
Sat Flow, veh/h	1315	215	1499	1001	1177	658	1830	1922	1629	993	1969	1668
Grp Volume(v), veh/h	53	0	374	85	0	92	97	350	41	20	777	75
Grp Sat Flow(s),veh/h/ln	1315	0	1715	1001	0	1835	1830	1922	1629	993	1969	1668
Q Serve(g_s), s	2.7	0.0	16.7	3.3	0.0	3.2	2.1	7.4	0.9	0.9	29.0	2.1
Cycle Q Clear(g_c), s	5.8	0.0	16.7	20.0	0.0	3.2	2.1	7.4	0.9	0.9	29.0	2.1
Prop In Lane	1.00	0	0.87	1.00	0	0.36	1.00	4400	1.00	1.00	070	1.00
Lane Grp Cap(c), veh/h	367	0	429	131	0	459	242	1120	949	530	873	740
V/C Ratio(X)	0.14	0.00	0.87	0.65	0.00	0.20	0.40	0.31	0.04	0.04	0.89	0.10
Avail Cap(c_a), veh/h	367	0	429	131	0	459	416	1554	1317	661	1132	959
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	26.0	0.0	28.8	39.2	0.0	23.7	16.7	8.5	7.2	12.6	20.5	13.0
Incr Delay (d2), s/veh	0.2	0.0	17.6	10.8	0.0	0.2	1.1	0.2	0.0	0.0	7.4	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.2	0.0	0.0
%ile BackOfQ(50%),veh/In	0.8	0.0	8.2	1.9	0.0	1.3	0.7	2.3	0.2	0.2	12.5	0.7
Unsig. Movement Delay, s/veh	26.2	0.0	46.4	50.0	0.0	23.9	17.8	8.7	7.2	12.7	27.8	13.0
LnGrp Delay(d),s/veh LnGrp LOS	20.2 C	0.0 A	40.4 D	50.0 D	0.0 A	23.9 C	17.0 B	0.7 A	7.2 A	12.7 B	27.0 C	13.0 B
	U	427	D	D	177	0	D	488	A	D	872	D
Approach Vol, veh/h		427 43.9			36.5			400 10.4			26.2	
Approach Delay, s/veh		_			_			_			•	
Approach LOS		D			D	•		В			С	
Timer - Assigned Phs	1	42.2		4		<u>6</u>		8				
Phs Duration (G+Y+Rc), s	11.1 * c 7	42.2		26.7 * 6.7		53.3 * c 7		26.7				
Change Period (Y+Rc), s	* 6.7	* 6.7		* 20		* 6.7 * 65		* 6.7 * 20				
Max Green Setting (Gmax), s	* 12	* 46				* 65						
Max Q Clear Time (g_c+l1), s	4.1	31.0		18.7		9.4		22.0 0.0				
Green Ext Time (p_c), s	0.1	4.5		0.3		2.0		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			27.0									
HCM 6th LOS			С									
N1 /												

Notes

Intersection

Int Delay, s/veh	0.8					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1	1	٢	1	Y	
Traffic Vol, veh/h	408	21	21	181	15	13
Future Vol, veh/h	408	21	21	181	15	13
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	50	150	-	0	-
Veh in Median Storage	,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	81	81	87	87	92	92
Heavy Vehicles, %	1	0	0	3	0	0
Mvmt Flow	504	26	24	208	16	14

Major/Minor	Major1	Ν	Major2	N	linor1		
Conflicting Flow All	0	0	530	0	760	504	
Stage 1	-	-	-	-	504	-	
Stage 2	-	-	-	-	256	-	
Critical Hdwy	-	-	4.1	-	6.4	6.2	
Critical Hdwy Stg 1	-	-	-	-	5.4	-	
Critical Hdwy Stg 2	-	-	-	-	5.4	-	
Follow-up Hdwy	-	-	2.2	-	3.5	3.3	
Pot Cap-1 Maneuver	-	-	1048	-	377	572	
Stage 1	-	-	-	-	611	-	
Stage 2	-	-	-	-	791	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuve	r -	-	1048	-	368	572	
Mov Cap-2 Maneuve	r -	-	-	-	368	-	
Stage 1	-	-	-	-	611	-	
Stage 2	-	-	-	-	773	-	

Approach	EB	WB	NB
HCM Control Delay, s	0	0.9	13.8
HCM LOS			В

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	441	-	-	1048	-
HCM Lane V/C Ratio	0.069	-	-	0.023	-
HCM Control Delay (s)	13.8	-	-	8.5	-
HCM Lane LOS	В	-	-	Α	-
HCM 95th %tile Q(veh)	0.2	-	-	0.1	-

	٠	+	1	4	Ļ	*	1	Ť	1	*	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	Þ		٦	T.		٦	1	7	٦	1	1
Traffic Volume (veh/h)	126	84	232	87	68	48	335	852	102	29	499	76
Future Volume (veh/h)	126	84	232	87	68	48	335	852	102	29	499	76
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1969	1969	1969	1969	1969	1969	1984	1984	1984	1969	1969	1969
Adj Flow Rate, veh/h	168	112	242	102	80	56	368	936	112	33	561	85
Peak Hour Factor	0.75	0.75	0.75	0.85	0.85	0.85	0.91	0.91	0.91	0.89	0.89	0.89
Percent Heavy Veh, %	2	2	2	2	2	2	1	1	1	2	2	2
Cap, veh/h	341	143	309	164	278	194	427	1131	958	193	665	564
Arrive On Green	0.26	0.26	0.26	0.26	0.26	0.26	0.15	0.57	0.57	0.34	0.34	0.34
Sat Flow, veh/h	1253	555	1198	1027	1078	755	1890	1984	1682	538	1969	1668
Grp Volume(v), veh/h	168	0	354	102	0	136	368	936	112	33	561	85
Grp Sat Flow(s),veh/h/ln	1253	0	1753	1027	0	1833	1890	1984	1682	538	1969	1668
Q Serve(g_s), s	9.6	0.0	14.6	5.4	0.0	4.6	9.2	29.8	2.4	4.1	20.5	2.8
Cycle Q Clear(g_c), s	14.3	0.0	14.6	20.0	0.0	4.6	9.2	29.8	2.4	15.9	20.5	2.8
Prop In Lane	1.00		0.68	1.00		0.41	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	341	0	451	164	0	472	427	1131	958	193	665	564
V/C Ratio(X)	0.49	0.00	0.78	0.62	0.00	0.29	0.86	0.83	0.12	0.17	0.84	0.15
Avail Cap(c_a), veh/h	341	0	451	164	0	472	443	1653	1401	330	1166	988
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	28.8	0.0	26.8	36.9	0.0	23.1	16.3	13.6	7.7	27.4	23.8	17.9
Incr Delay (d2), s/veh	1.1	0.0	8.8	7.0	0.0	0.3	15.5	2.4	0.1	0.4	3.0	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.7	0.0	6.4	2.1	0.0	1.8	4.8	10.1	0.6	0.5	8.6	0.9
Unsig. Movement Delay, s/veh		0.0	0.1		0.0	1.0			0.0	0.0	0.0	0.0
LnGrp Delay(d),s/veh	29.9	0.0	35.6	43.9	0.0	23.5	31.8	16.0	7.7	27.8	26.8	18.1
LnGrp LOS	C	A	D	D	A	C	C	B	A	C	C	В
Approach Vol, veh/h	<u> </u>	522			238	<u> </u>		1416	7.		679	
Approach Delay, s/veh		33.8			32.2			19.4			25.8	
Approach LOS		00.0 C			02.2 C			13.4 B			23.0 C	
	_			_	U	0					U	
Timer - Assigned Phs	10.0	2		4		<u>6</u>		8				
Phs Duration (G+Y+Rc), s	18.0 * c 7	33.0 * 6 7		26.7 * 6 7		51.0 * 6 7		26.7 * 6 7				
Change Period (Y+Rc), s	* 6.7	* 6.7		* 6.7		* 6.7		* 6.7				
Max Green Setting (Gmax), s	* 12	* 46		* 20		* 65		* 20				
Max Q Clear Time (g_c+l1), s	11.2	22.5		16.6		31.8		22.0				
Green Ext Time (p_c), s	0.1	3.8		0.9		7.7		0.0				
Intersection Summary			0.1.0									
HCM 6th Ctrl Delay			24.6									
HCM 6th LOS			С									
Notes												

Notes

Intersection

Int Delay, s/veh	1.1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1	1	5	1	Y	
Traffic Vol, veh/h	414	22	23	456	27	28
Future Vol, veh/h	414	22	23	456	27	28
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	50	150	-	0	-
Veh in Median Storage	,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	75	75	90	90	92	92
Heavy Vehicles, %	2	0	0	1	0	0
Mvmt Flow	552	29	26	507	29	30

Major/Minor	Major1	Ν	/lajor2	Ν	/linor1		
Conflicting Flow All	0	0	581	0	1111	552	
Stage 1	-	-	-	-	552	-	
Stage 2	-	-	-	-	559	-	
Critical Hdwy	-	-	4.1	-	6.4	6.2	
Critical Hdwy Stg 1	-	-	-	-	5.4	-	
Critical Hdwy Stg 2	-	-	-	-	5.4	-	
Follow-up Hdwy	-	-	2.2	-	3.5	3.3	
Pot Cap-1 Maneuver	-	-	1003	-	233	537	
Stage 1	-	-	-	-	581	-	
Stage 2	-	-	-	-	576	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuver	r -	-	1003	-	227	537	
Mov Cap-2 Maneuver	r -	-	-	-	227	-	
Stage 1	-	-	-	-	581	-	
Stage 2	-	-	-	-	561	-	

Approach	EB	WB	NB
HCM Control Delay, s	0	0.4	18.8
HCM LOS			С

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	321	-	-	1003	-
HCM Lane V/C Ratio	0.186	-	-	0.025	-
HCM Control Delay (s)	18.8	-	-	8.7	-
HCM Lane LOS	С	-	-	А	-
HCM 95th %tile Q(veh)	0.7	-	-	0.1	-

	≁	+	1	4	Ļ	*	1	t	1	*	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u></u>	1.		1	ţ,		7	•	1	1	1	7
Traffic Volume (veh/h)	55	53	282	73	57	30	248	508	86	23	589	80
Future Volume (veh/h)	55	53	282	73	57	30	248	508	86	23	589	80
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	4 00	1.00	1.00	4.00	1.00	1.00	4 00	1.00	1.00	4.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	1000	No	1000	1000		1000	1000	No	1000	1000	No	1000
Adj Sat Flow, veh/h/ln	1969	1969	1969	1969 96	1969 98	1969 42	1969	1969	1969 116	1969 32	1969 620	1969 140
Adj Flow Rate, veh/h	85 0.65	65 0.82	244 0.85	96 0.76	98 0.58	42 0.72	370 0.67	564 0.90	0.74	32 0.71	620 0.95	0.57
Peak Hour Factor	0.65	0.62 2	0.65	0.76	0.56	0.72	0.67	0.90	0.74	0.71	0.95	0.57
Percent Heavy Veh, % Cap, veh/h	ے 318	2 89	2 334	ے 174	2 321	2 137	ے 408	ے 1163	2 985	2 367	2 721	ے 611
Arrive On Green	0.25	0.25	0.25	0.25	0.25	0.25	408 0.14	0.59	965 0.59	0.37	0.37	0.37
	1249	363	1361	1070	1308	0.25 560	1875	1969	1668	760	1969	1668
Sat Flow, veh/h												
Grp Volume(v), veh/h	85	0	309	96	0	140	370	564	116	32	620	140
Grp Sat Flow(s),veh/h/ln	1249	0	1724	1070	0	1868	1875	1969	1668	760	1969	1668
Q Serve(g_s), s	4.9	0.0	13.4	6.6	0.0	5.0	9.6	13.4	2.5	2.3	23.8	4.7
Cycle Q Clear(g_c), s	9.9	0.0	13.4	20.0	0.0	5.0	9.6	13.4	2.5	2.3	23.8	4.7
Prop In Lane	1.00	0	0.79 423	1.00 174	٥	0.30	1.00	1162	1.00 985	1.00 367	721	1.00
Lane Grp Cap(c), veh/h	318	0	423 0.73		0	458	408	1163	985 0.12	0.09		611
V/C Ratio(X)	0.27 318	0.00	423	0.55 174	0.00 0	0.31 458	0.91 417	0.49 1561	1323	0.09 517	0.86 1110	0.23 941
Avail Cap(c_a), veh/h HCM Platoon Ratio	1.00	0 1.00	423 1.00	1.00	1.00	450 1.00	1.00	1.00	1.00	1.00	1.00	94 T 1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	29.1	0.00	28.3	37.9	0.00	25.1	17.3	9.6	7.3	17.1	23.9	17.9
Uniform Delay (d), s/veh	29.1 0.4	0.0	20.3 6.4	37.9	0.0	25.1 0.4	22.9	9.0 0.3	7.3 0.1	0.1	23.9 4.4	0.2
Incr Delay (d2), s/veh Initial Q Delay(d3),s/veh	0.4	0.0	0.4	0.0	0.0	0.4	0.0	0.0	0.1	0.1	4.4 0.0	0.2
%ile BackOfQ(50%),veh/ln	1.4	0.0	0.0 5.7	2.0	0.0	2.0	0.0 5.7	4.3	0.0	0.0	10.3	1.6
Unsig. Movement Delay, s/veh		0.0	5.7	2.0	0.0	2.0	5.7	4.5	0.7	0.4	10.5	1.0
LnGrp Delay(d),s/veh	29.6	0.0	34.7	41.5	0.0	25.5	40.2	9.9	7.4	17.2	28.3	18.1
LIGIP Delay(0), siven	29.0 C	0.0 A	54.7 C	41.5 D	0.0 A	25.5 C	40.2 D	9.9 A	7.4 A	н. 2 В	20.3 C	B
Approach Vol, veh/h	U	394	0	U	236	0	U	1050		D	792	<u> </u>
Approach Delay, s/veh		33.6			32.0			20.3			26.1	
Approach LOS		55.0 C			32.0 C			20.3 C			20.1 C	
	_				U	0					U	
Timer - Assigned Phs Phs Duration (G+Y+Rc), s	18.3	2 36.6		<u>4</u> 26.7		<u>6</u> 54.9		8 26.7				
Change Period (Y+Rc), s	* 6.7	* 6.7		* 6.7		* 6.7		* 6.7				
Max Green Setting (Gmax), s	* 12	* 46		* 20		* 65		* 20				
Max Q Clear Time (g_c+l1), s	11.6	25.8		15.4		15.4		22.0				
Green Ext Time (p_c), s	0.1	4.1		0.8		3.8		0.0				
,	0.1	7.1		0.0		5.0		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			25.4									
HCM 6th LOS			С									

Notes

Intersection

Int Delay, s/veh	6.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1	1	٦	1	Y	
Traffic Vol, veh/h	364	125	124	261	26	26
Future Vol, veh/h	364	125	124	261	26	26
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	50	150	-	0	-
Veh in Median Storage	,#0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	88	45	45	76	40	40
Heavy Vehicles, %	2	0	0	2	0	0
Mvmt Flow	414	278	276	343	65	65

Major/Minor	Major1	N	lajor2	Ν	/linor1		
Conflicting Flow All	0	0	692	0	1309	414	
Stage 1	-	-	-	-	414	-	
Stage 2	-	-	-	-	895	-	
Critical Hdwy	-	-	4.1	-	6.4	6.2	
Critical Hdwy Stg 1	-	-	-	-	5.4	-	
Critical Hdwy Stg 2	-	-	-	-	5.4	-	
Follow-up Hdwy	-	-	2.2	-	3.5	3.3	
Pot Cap-1 Maneuver	-	-	912	-	177	643	
Stage 1	-	-	-	-	671	-	
Stage 2	-	-	-	-	402	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuve	· -	-	912	-	123	643	
Mov Cap-2 Maneuver	· -	-	-	-	123	-	
Stage 1	-	-	-	-	671	-	
Stage 2	-	-	-	-	280	-	

Approach	EB	WB	NB
HCM Control Delay, s	0	4.7	48.3
HCM LOS			Е

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	206	-	-	912	-
HCM Lane V/C Ratio	0.631	-	-	0.302	-
HCM Control Delay (s)	48.3	-	-	10.6	-
HCM Lane LOS	E	-	-	В	-
HCM 95th %tile Q(veh)	3.7	-	-	1.3	-

	≁	+	1	4	Ļ	*	1	t	1	*	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	1.	o / -	٦	ħ		٦	1	1	٦	1	1
Traffic Volume (veh/h)	86	63	345	73	48	30	187	508	86	23	589	51
Future Volume (veh/h)	86	63	345	73	48	30	187	508	86	23	589	51
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	4 00	1.00	1.00	4.00	1.00	1.00	4 00	1.00	1.00	4.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	1000	No	1000	4000	No	4000	1000	No	4000	1000	No	1000
Adj Sat Flow, veh/h/ln	1969	1969	1969	1969	1969	1969	1969	1969	1969	1969	1969	1969
Adj Flow Rate, veh/h	162	90	380	96	77	42	246	564	116	32	620	75
Peak Hour Factor	0.53	0.70	0.71	0.76	0.62	0.72	0.76	0.90	0.74	0.71	0.95	0.68
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2 615
Cap, veh/h	365	86	365	95	315	172	350	1105	936	375	726	
Arrive On Green	0.26 1273	0.26	0.26 1390	0.26 923	0.26	0.26 653	0.10	0.56 1969	0.56 1668	0.37 760	0.37	0.37
Sat Flow, veh/h		329			1198		1875				1969	1668
Grp Volume(v), veh/h	162	0	470	96	0	119	246	564	116	32	620	75
Grp Sat Flow(s),veh/h/ln	1273	0	1719	923	0	1851	1875	1969	1668	760	1969	1668
Q Serve(g_s), s	8.7	0.0	20.0	0.0	0.0	3.9	5.8	13.4	2.5	2.1	22.1	2.3
Cycle Q Clear(g_c), s	12.6	0.0	20.0	20.0	0.0	3.9	5.8	13.4	2.5	2.1	22.1	2.3
Prop In Lane	1.00	0	0.81	1.00	0	0.35	1.00	4405	1.00	1.00	700	1.00
Lane Grp Cap(c), veh/h	365	0	452	95	0	486	350	1105	936	375	726	615
V/C Ratio(X)	0.44	0.00	1.04	1.01	0.00	0.24	0.70	0.51	0.12	0.09	0.85	0.12
Avail Cap(c_a), veh/h	365	0	452	95	0	486	449	1673	1418	554	1190	1008
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	27.1	0.0	28.1	38.1	0.0	22.1	16.2	10.3	7.9	15.8	22.2	15.9
Incr Delay (d2), s/veh	0.9	0.0	53.4	96.6	0.0	0.3	3.5	0.4	0.1	0.1	3.4	0.1
Initial Q Delay(d3),s/veh	0.0 2.4	0.0	0.0 13.8	0.0 4.2	0.0	0.0	0.0 2.2	0.0 4.3	0.0	0.0 0.3	0.0 9.1	0.0 0.7
%ile BackOfQ(50%),veh/ln Unsig. Movement Delay, s/veh		0.0	13.0	4.2	0.0	1.5	2.2	4.3	0.7	0.5	9.1	0.7
	27.9	0.0	81.4	134.7	0.0	22.4	19.7	10.6	7.9	15.9	25.6	16.0
LnGrp Delay(d),s/veh LnGrp LOS	27.9 C	0.0 A	01.4 F	134.7 F	0.0 A	22.4 C	19.7 B	10.0 B	7.9 A	15.9 B	25.0 C	10.0 B
	U	632	Г	Г	215	U	D	926	A	D	727	D
Approach Vol, veh/h		632 67.7			72.5			926 12.7			24.2	
Approach Delay, s/veh Approach LOS		67.7 E			72.5 E			12.7 B			24.2 C	
					E						U	
Timer - Assigned Phs	1	2		4		6		8				
Phs Duration (G+Y+Rc), s	14.7 * c 7	34.8		26.7		49.4 * c 7		26.7				
Change Period (Y+Rc), s	* 6.7	* 6.7		* 6.7		* 6.7		* 6.7				
Max Green Setting (Gmax), s	* 12	* 46		* 20		* 65		* 20				
Max Q Clear Time (g_c+l1), s	7.8	24.1		22.0		15.4		22.0				
Green Ext Time (p_c), s	0.3	4.0		0.0		3.8		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			35.1									
HCM 6th LOS			D									

Notes

Intersection

Int Delay, s/veh	121.9					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1	1	۲	1	Y	
Traffic Vol, veh/h	364	25	25	261	129	130
Future Vol, veh/h	364	25	25	261	129	130
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	50	150	-	0	-
Veh in Median Storage	e,#0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	88	45	45	76	40	40
Heavy Vehicles, %	2	0	0	2	0	0
Mvmt Flow	414	56	56	343	323	325

Major/Minor	Major1	Ν	/lajor2	Ν	linor1		
Conflicting Flow All	0	0	470	0	869	414	
Stage 1	-	-	-	-	414	-	
Stage 2	-	-	-	-	455	-	
Critical Hdwy	-	-	4.1	-	6.4	6.2	
Critical Hdwy Stg 1	-	-	-	-	5.4	-	
Critical Hdwy Stg 2	-	-	-	-	5.4	-	
Follow-up Hdwy	-	-	2.2	-	3.5	3.3	
Pot Cap-1 Maneuver	-	-	1102	-	325	643	
Stage 1	-	-	-	-	671	-	
Stage 2	-	-	-	-	643	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuver	· -	-	1102		~ 308	643	
Mov Cap-2 Maneuver	· -	-	-		~ 308	-	
Stage 1	-	-	-	-	671	-	
Stage 2	-	-	-	-	610	-	

Approach	EB	WB	NB
HCM Control Delay, s	0	1.2	284.6
HCM LOS			F

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)	417	-	-	1102	-	
HCM Lane V/C Ratio	1.553	-	-	0.05	-	
HCM Control Delay (s)	284.6	-	-	8.4	-	
HCM Lane LOS	F	-	-	Α	-	
HCM 95th %tile Q(veh)	35.6	-	-	0.2	-	
Notes						
	^ D	1	1.00	20.		station Nat Defined

~: Volume exceeds capacity

\$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon

Bible Baptist Church TIS Bergmann

Movement	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	TR	L	TR	L	Т	R	L	Т	R	
Maximum Queue (ft)	154	385	140	120	90	175	40	103	450	248	
Average Queue (ft)	28	159	55	29	44	62	10	14	232	36	
95th Queue (ft)	99	338	114	77	79	133	33	64	401	134	
Link Distance (ft)		606		891		1088			855		
Upstream Blk Time (%)		0									
Queuing Penalty (veh)		0									
Storage Bay Dist (ft)	225		225		225		225	150		100	
Storage Blk Time (%)		7				0			27		
Queuing Penalty (veh)		4				0			24		

Intersection: 2: Site Drive & Golf Club Road

Movement	WB	NB
Directions Served	L	LR
Maximum Queue (ft)	38	46
Average Queue (ft)	5	15
95th Queue (ft)	24	36
Link Distance (ft)		413
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)	150	
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 3: Latson Road & Site Drive

Movement
Directions Served
Maximum Queue (ft)
Average Queue (ft)
95th Queue (ft)
Link Distance (ft)
Upstream Blk Time (%)
Queuing Penalty (veh)
Storage Bay Dist (ft)
Storage Blk Time (%)
Queuing Penalty (veh)

Network Summary

Movement	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	TR	L	TR	L	Т	R	L	Т	R	
Maximum Queue (ft)	199	337	386	357	302	411	133	70	326	171	
Average Queue (ft)	85	139	154	83	143	186	23	25	183	39	
95th Queue (ft)	163	280	359	249	278	333	86	60	291	126	
Link Distance (ft)		606		891		1088			855		
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	225		225		225		225	150		100	
Storage Blk Time (%)	0	5	24	0	6	3			26	0	
Queuing Penalty (veh)	1	7	29	0	63	11			28	0	

Intersection: 2: Site Drive & Golf Club Road

Movement	WB	NB
Directions Served	L	LR
Maximum Queue (ft)	35	53
Average Queue (ft)	6	21
95th Queue (ft)	26	42
Link Distance (ft)		413
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)	150	
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 3: Latson Road & Site Drive

Movement
Directions Served
Maximum Queue (ft)
Average Queue (ft)
95th Queue (ft)
Link Distance (ft)
Upstream Blk Time (%)
Queuing Penalty (veh)
Storage Bay Dist (ft)
Storage Blk Time (%)
Queuing Penalty (veh)

Network Summary

Movement	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	TR	L	TR	L	Т	R	L	Т	R	
Maximum Queue (ft)	103	301	107	148	314	358	138	165	486	250	
Average Queue (ft)	32	132	47	38	126	114	23	22	233	55	
95th Queue (ft)	82	235	99	96	290	269	88	88	385	185	
Link Distance (ft)		606		891		1088			855		
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	225		225		225		225	150		100	
Storage Blk Time (%)		2		0	9	0			31		
Queuing Penalty (veh)		1		0	58	0			33		

Intersection: 2: Site Drive & Golf Club Road

Movement	EB	EB	WB	NB
Directions Served	Т	R	L	LR
Maximum Queue (ft)	4	26	87	89
Average Queue (ft)	0	3	30	23
95th Queue (ft)	3	16	70	63
Link Distance (ft)	674			413
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)		50	150	
Storage Blk Time (%)		0		
Queuing Penalty (veh)		0		

Intersection: 3: Latson Road & Site Drive

Movement Directions Served Maximum Queue (ft)

Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)

Network Summary

Movement	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	TR	L	TR	L	Т	R	L	Т	R	
Maximum Queue (ft)	201	391	236	214	194	213	40	157	389	248	
Average Queue (ft)	55	170	96	45	80	92	18	17	213	32	
95th Queue (ft)	136	334	249	158	157	168	40	68	339	133	
Link Distance (ft)		606		891		1088			855		
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	225		225		225		225	150		100	
Storage Blk Time (%)		10	8	0	1	0			29	0	
Queuing Penalty (veh)		11	7	0	4	1			23	0	

Intersection: 2: Site Drive & Golf Club Road

N4		ND
Movement	WB	NB
Directions Served	L	LR
Maximum Queue (ft)	48	428
Average Queue (ft)	7	161
95th Queue (ft)	29	452
Link Distance (ft)		413
Upstream Blk Time (%)		24
Queuing Penalty (veh)		0
Storage Bay Dist (ft)	150	
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 3: Latson Road & Site Drive

Movement	
Directions Served	
Maximum Queue (ft)	
Average Queue (ft)	
95th Queue (ft)	
Link Distance (ft)	
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

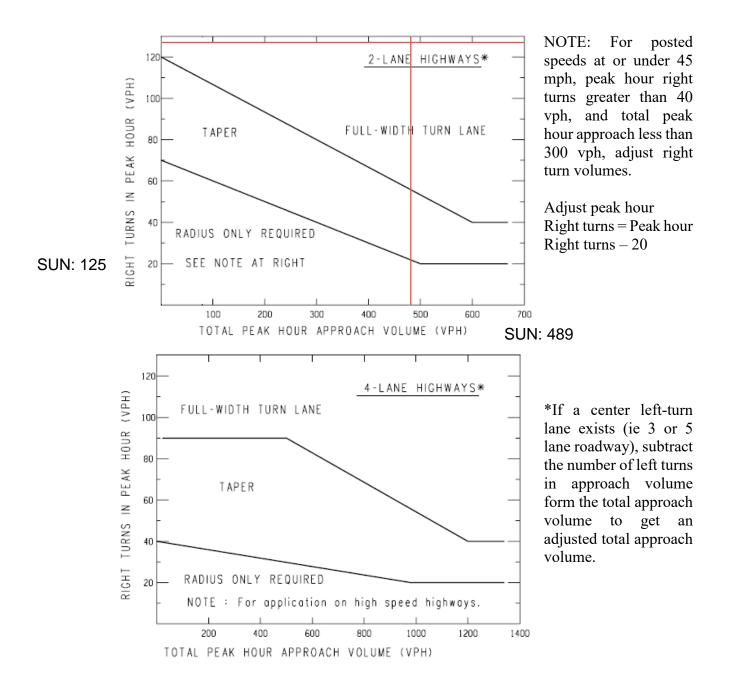
Network Summary

	۶	→	7	1	+	*	1	1	1	4	Ŧ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	Þ		٦	f.		٦	•	1	٦	1	1
Traffic Volume (veh/h)	86	63	345	73	48	30	187	508	86	23	589	51
Future Volume (veh/h)	86	63	345	73	48	30	187	508	86	23	589	51
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	4000	No	4000	4000	No	4000	4000	No	4000	4000	No	4000
Adj Sat Flow, veh/h/ln	1969	1969	1969	1969	1969	1969	1969	1969	1969	1969	1969	1969
Adj Flow Rate, veh/h	162	90	380	96	77	42	246	564	116	32	620	75
Peak Hour Factor	0.53	0.70	0.71	0.76	0.62	0.72	0.76	0.90	0.74	0.71	0.95	0.68
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	471	117	493	179	425	232	274	991	840	307	678	574
Arrive On Green	0.35	0.35	0.35	0.35	0.35	0.35	0.09	0.50	0.50	0.34	0.34	0.34
Sat Flow, veh/h	1273	329	1390	923	1198	653	1875	1969	1668	760	1969	1668
Grp Volume(v), veh/h	162	0	470	96	0	119	246	564	116	32	620	75
Grp Sat Flow(s),veh/h/ln	1273	0	1719	923	0	1851	1875	1969	1668	760	1969	1668
Q Serve(g_s), s	9.5	0.0	22.9	9.7	0.0	4.2	7.8	18.8	3.5	2.9	28.4	2.9
Cycle Q Clear(g_c), s	13.7	0.0	22.9	32.6	0.0	4.2	7.8	18.8	3.5	6.7	28.4	2.9
Prop In Lane	1.00	•	0.81	1.00	•	0.35	1.00	004	1.00	1.00	070	1.00
Lane Grp Cap(c), veh/h	471	0	609	179	0	656	274	991	840	307	678	574
V/C Ratio(X)	0.34	0.00	0.77	0.54	0.00	0.18	0.90	0.57	0.14	0.10	0.92	0.13
Avail Cap(c_a), veh/h	471	0	609	179	0	656	274	1072	908	339	758	643
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	25.7	0.0	27.0	41.5	0.0	21.0	22.2	16.3	12.5	23.8	29.6	21.2
Incr Delay (d2), s/veh	0.4	0.0	6.0	3.1	0.0	0.1	29.8	0.6	0.1	0.1	14.7	0.1
Initial Q Delay(d3),s/veh	0.0 2.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In		0.0	9.4	2.2	0.0	1.7	5.2	7.3	1.1	0.5	14.7	1.0
Unsig. Movement Delay, s/veh	26.1	0.0	33.1	44.6	0.0	21.1	52.1	16.9	12.6	24.0	44.3	21.3
LnGrp Delay(d),s/veh	20.1 C	0.0 A	33.1 C	44.0 D	0.0 A	21.1 C	52.1 D	10.9 B	12.0 B	24.0 C	44.3 D	21.3 C
LnGrp LOS	U	632	U	D	215	U	D	926	D	U		<u> </u>
Approach Vol, veh/h		31.3			31.6			926 25.7			727 41.1	
Approach Delay, s/veh												
Approach LOS		С			С			С			D	
Timer - Assigned Phs	1	2		4		6		8				
Phs Duration (G+Y+Rc), s	15.0	39.1		40.1		54.1		40.1				
Change Period (Y+Rc), s	* 6.7	* 6.7		* 6.7		* 6.7		* 6.7				
Max Green Setting (Gmax), s	* 8.3	* 36		* 33		* 51		* 33				
Max Q Clear Time (g_c+l1), s	9.8	30.4		24.9		20.8		34.6				
Green Ext Time (p_c), s	0.0	2.0		2.2		3.7		0.0				
Intersection Summary			.									
HCM 6th Ctrl Delay			32.1									
HCM 6th LOS			С									

Notes

Movement	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	TR	L	TR	L	Т	R	L	Т	R	
Maximum Queue (ft)	120	277	207	178	229	269	50	216	580	250	
Average Queue (ft)	44	135	65	35	95	122	18	26	300	57	
95th Queue (ft)	99	237	170	117	187	220	41	123	590	200	
Link Distance (ft)		606		891		1088			855		
Upstream Blk Time (%)									1		
Queuing Penalty (veh)									0		
Storage Bay Dist (ft)	225		225		225		225	150		100	
Storage Blk Time (%)		1	2	0	2	1			41		
Queuing Penalty (veh)		1	2	0	13	3			31		

Intersection: 2: Site Drive & Golf Club Road


Movement	WB	NB
	VVD	
Directions Served	L	LR
Maximum Queue (ft)	39	428
Average Queue (ft)	7	159
95th Queue (ft)	28	448
Link Distance (ft)		413
Upstream Blk Time (%)		24
Queuing Penalty (veh)		0
Storage Bay Dist (ft)	150	
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 3: Latson Road & Site Drive

Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)

Network Summary

GOLF CLUB ROAD & SITE DRIVE RIGHT-TURN LANE WARRANT - PHASE II

Sample Problem: The Design Speed is 55 mph. The Peak Hour Approach Volume is 300 vph. The Number of Right Turns in the Peak Hous is 100 vph. Determine if a right turn lane is recommended.

Solution: Figure indicates that the intersection of 300 vph and 100 vph is located above the upper trend line; thus, a right-turn lane may be recommended.

Appendix F – Phase II Alternative B Build Conditions Data

	٠	-	7	1	←	•	1	t	1	4	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	₽		7	1.		٦	1	1	٦	†	1
Traffic Volume (veh/h)	43	38	332	67	47	26	85	308	36	19	729	64
Future Volume (veh/h)	43	38	332	67	47	26	85	308	36	19	729	64
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1984	1984	1984	1953	1953	1953	1922	1922	1922	1969	1969	1969
Adj Flow Rate, veh/h	53	47	317	85	59	33	97	350	41	20	784	69
Peak Hour Factor	0.81	0.81	0.81	0.79	0.79	0.79	0.88	0.88	0.88	0.93	0.93	0.93
Percent Heavy Veh, %	1	1	1	3	3	3	5	5	5	2	2	2
Cap, veh/h	364	55	372	136	293	164	241	1124	952	533	879	745
Arrive On Green	0.25	0.25	0.25	0.25	0.25	0.25	0.06	0.58	0.58	0.45	0.45	0.45
Sat Flow, veh/h	1315	222	1494	1010	1177	658	1830	1922	1629	993	1969	1668
Grp Volume(v), veh/h	53	0	364	85	0	92	97	350	41	20	784	69
Grp Sat Flow(s), veh/h/ln	1315	0	1715	1010	0	1835	1830	1922	1629	993	1969	1668
• • • • • •	2.7	0.0	16.3	3.7	0.0	3.2	2.1	7.4	0.9	0.9	29.5	1.9
Q Serve(g_s), s	2.7 5.9	0.0	16.3	20.0	0.0	3.2 3.2	2.1	7.4 7.4	0.9	0.9	29.5 29.5	1.9
Cycle Q Clear(g_c), s		0.0	0.87		0.0	3.2 0.36		7.4		1.00	29.5	
Prop In Lane	1.00	0		1.00	0		1.00	1101	1.00		070	1.00
Lane Grp Cap(c), veh/h	364	0	427	136	0	456	241	1124	952	533	879	745
V/C Ratio(X)	0.15	0.00	0.85	0.62	0.00	0.20	0.40	0.31	0.04	0.04	0.89	0.09
Avail Cap(c_a), veh/h	364	0	427	136	0	456	413	1546	1310	657	1126	954
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	26.2	0.0	28.8	39.2	0.0	23.9	16.8	8.5	7.1	12.6	20.5	12.9
Incr Delay (d2), s/veh	0.2	0.0	15.3	8.5	0.0	0.2	1.1	0.2	0.0	0.0	7.7	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.8	0.0	7.7	1.9	0.0	1.3	0.7	2.3	0.2	0.2	12.8	0.6
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	26.4	0.0	44.1	47.7	0.0	24.1	17.9	8.6	7.1	12.6	28.1	12.9
LnGrp LOS	С	A	D	D	Α	С	В	Α	A	В	С	B
Approach Vol, veh/h		417			177			488			873	
Approach Delay, s/veh		41.9			35.5			10.3			26.6	
Approach LOS		D			D			В			С	
Timer - Assigned Phs	1	2		4		6		8				
Phs Duration (G+Y+Rc), s	11.1	42.6		26.7		53.7		26.7				
Change Period (Y+Rc), s	* 6.7	* 6.7		* 6.7		* 6.7		* 6.7				
Max Green Setting (Gmax), s	* 12	* 46		* 20		* 65		* 20				
Max Q Clear Time (g_c+l1), s	4.1	31.5		18.3		9.4		22.0				
Green Ext Time (p_c), s	0.1	4.4		0.4		2.0		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			26.6									
HCM 6th LOS			20.0 C									
Notoo			-									

Notes

In	tο	rse	201	п	۸r	۱.
	LCI	30		LI	UI.	L

Int Delay, s/veh	0.6					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	•	1	٦	1	Y	
Traffic Vol, veh/h	408	21	15	181	15	5
Future Vol, veh/h	408	21	15	181	15	5
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	50	150	-	0	-
Veh in Median Storage	,#0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	81	81	87	87	92	92
Heavy Vehicles, %	1	0	0	3	0	0
Mvmt Flow	504	26	17	208	16	5

Major/Minor	Major1	ľ	Major2	N	linor1		
Conflicting Flow All	0	0	530	0	746	504	
Stage 1	-	-	-	-	504	-	
Stage 2	-	-	-	-	242	-	
Critical Hdwy	-	-	4.1	-	6.4	6.2	
Critical Hdwy Stg 1	-	-	-	-	5.4	-	
Critical Hdwy Stg 2	-	-	-	-	5.4	-	
Follow-up Hdwy	-	-	2.2	-	3.5	3.3	
Pot Cap-1 Maneuver	-	-	1048	-	384	572	
Stage 1	-	-	-	-	611	-	
Stage 2	-	-	-	-	803	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuver	· -	-	1048	-	378	572	
Mov Cap-2 Maneuver	· -	-	-	-	378	-	
Stage 1	-	-	-	-	611	-	
Stage 2	-	-	-	-	790	-	

Approach	EB	WB	NB
HCM Control Delay, s	0	0.6	14.2
HCM LOS			В

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	413	-	-	1048	-
HCM Lane V/C Ratio	0.053	-	-	0.016	-
HCM Control Delay (s)	14.2	-	-	8.5	-
HCM Lane LOS	В	-	-	Α	-
HCM 95th %tile Q(veh)	0.2	-	-	0.1	-

Intersection						
Int Delay, s/veh	0.1					
-						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		1		1	•	7
Traffic Vol, veh/h	0	8	0	429	1122	6
Future Vol, veh/h	0	8	0	429	1122	6
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	75
Veh in Median Storage,	,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	88	88	88	88
Heavy Vehicles, %	0	0	0	5	2	0
Mvmt Flow	0	9	0	488	1275	7

Major/Minor	Minor2	Ma	ajor1	Ма	jor2	
Conflicting Flow All	-	1275	-	0	-	0
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.2	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.3	-	-	-	-
Pot Cap-1 Maneuver	0	206	0	-	-	-
Stage 1	0	-	0	-	-	-
Stage 2	0	-	0	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	-	206	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	23.2	0	0
HCM LOS	С		

Minor Lane/Major Mvmt	NBT EBLn1	SBT	SBR
Capacity (veh/h)	- 206	-	-
HCM Lane V/C Ratio	- 0.042	-	-
HCM Control Delay (s)	- 23.2	-	-
HCM Lane LOS	- C	-	-
HCM 95th %tile Q(veh)	- 0.1	-	-

	٠	+	*	4	ł	*	1	1	1	4	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	1.	• • -	٦	ħ	10	٦	1	1	7	1	1
Traffic Volume (veh/h)	126	84	215	87	68	48	334	852	102	29	506	69
Future Volume (veh/h)	126	84	215	87	68	48	334	852	102	29	506	69
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	4 00	1.00	1.00	1 00	1.00	1.00	4 00	1.00	1.00	1 00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	1060	No 1969	1060	1060	No 1969	1969	1001	No 1984	1001	1060	No 1969	1969
Adj Sat Flow, veh/h/ln	1969 168	1969	1969 220	1969 102	80	1969 56	1984 367	936	1984 112	1969 33	569	78
Adj Flow Rate, veh/h Peak Hour Factor	0.75	0.75	0.75	0.85	0.85	0.85	0.91	936 0.91	0.91	0.89	0.89	0.89
	0.75	0.75	0.75	0.85	0.85	0.05	0.91	0.91	0.91	0.09	0.69	0.09
Percent Heavy Veh, % Cap, veh/h	2 339	152	299	179	276	2 193	424	1135	962	2 195	673	ے 570
Arrive On Green	0.26	0.26	0.26	0.26	0.26	0.26	424 0.14	0.57	902 0.57	0.34	073	0.34
Sat Flow, veh/h	1253	0.20 593	1166	1048	1078	755	1890	1984	1682	538	1969	1668
									112			
Grp Volume(v), veh/h	168	0	332	102	0	136	367	936		33	569	78
Grp Sat Flow(s),veh/h/ln	1253	0	1759	1048	0	1833	1890	1984	1682	538	1969	1668
Q Serve(g_s), s	9.7 14.4	0.0	13.5 13.5	6.5	0.0 0.0	4.7	9.2 9.2	29.8 29.8	2.4 2.4	4.1	20.9	2.5 2.5
Cycle Q Clear(g_c), s Prop lo Lono	14.4	0.0	0.66	20.0 1.00	0.0	4.7 0.41	9.2 1.00	29.0	2.4 1.00	16.0 1.00	20.9	2.5 1.00
Prop In Lane	339	0	0.66 451	1.00	0	470	424	1135	962	1.00	673	570
Lane Grp Cap(c), veh/h V/C Ratio(X)	0.50	0.00	451 0.74	0.57	0.00	470 0.29	424 0.87	0.82	902 0.12	0.17	073	0.14
	339	0.00	451	179	0.00	470	441	0.82 1645	1394	328	0.85 1160	983
Avail Cap(c_a), veh/h HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	526 1.00	1.00	903 1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	29.1	0.00	26.6	36.3	0.00	23.3	16.3	13.5	7.7	27.3	23.8	17.7
Incr Delay (d2), s/veh	1.1	0.0	20.0 6.2	4.2	0.0	23.3	15.9	2.3	0.1	0.4	23.0 3.0	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.2	4.2 0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.1
%ile BackOfQ(50%),veh/ln	2.7	0.0	5.7	2.0	0.0	1.8	4.9	10.1	0.0	0.0	8.8	0.0
Unsig. Movement Delay, s/veh		0.0	5.7	2.0	0.0	1.0	4.5	10.1	0.0	0.5	0.0	0.5
LnGrp Delay(d),s/veh	30.2	0.0	32.8	40.4	0.0	23.7	32.3	15.9	7.7	27.7	26.8	17.9
LnGrp LOS	00.2 C	A	02.0 C	но.н D	A.	20.7 C	02.0 C	ю.5 В	A	27.7 C	20.0 C	В
Approach Vol, veh/h		500	0		238	0	0	1415		0	680	
Approach Delay, s/veh		32.0			30.8			19.5			25.8	
Approach LOS		02.0 C			0.00 C			10.0 B			20.0 C	
	4			4	U	C					U	
Timer - Assigned Phs	1 18.0	2		<u>4</u> 26.7		<u>6</u> 51.4		8 26.7				
Phs Duration (G+Y+Rc), s	* 6.7	33.4 * 6.7		20.7 * 6.7		51.4 * 6.7		20.7 * 6.7				
Change Period (Y+Rc), s Max Green Setting (Gmax), s	6.7 * 12	* 46		* 20		* 65		* 20				
	11.2	40 22.9		20 16.4		31.8		20				
Max Q Clear Time (g_c+l1), s	0.1	3.8		0.8		7.7		22.0 0.0				
Green Ext Time (p_c), s	0.1	3.0		0.0		1.1		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			24.2									
HCM 6th LOS			С									
Notos												

Notes

Intersection						
Int Delay, s/veh	0.9					
-						
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	1	1	1	Y	
Traffic Vol, veh/h	414	23	15	456	27	11
Future Vol, veh/h	414	23	15	456	27	11
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	50	150	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	75	75	90	90	92	92
Heavy Vehicles, %	2	0	0	1	0	0
Mvmt Flow	552	31	17	507	29	12

Major/Minor	Major1	Ν	lajor2	Ν	Minor1	
Conflicting Flow All	0	0	583	0	1093	552
Stage 1	-	-	-	-	552	-
Stage 2	-	-	-	-	541	-
Critical Hdwy	-	-	4.1	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1001	-	239	537
Stage 1	-	-	-	-	581	-
Stage 2	-	-	-	-	588	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1001	-	235	537
Mov Cap-2 Maneuver	-	-	-	-	235	-
Stage 1	-	-	-	-	581	-
Stage 2	-	-	-	-	578	-

Approach	EB	WB	NB
HCM Control Delay, s	0	0.3	20
HCM LOS			С

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	281	-	-	1001	-
HCM Lane V/C Ratio	0.147	-	-	0.017	-
HCM Control Delay (s)	20	-	-	8.7	-
HCM Lane LOS	С	-	-	Α	-
HCM 95th %tile Q(veh)	0.5	-	-	0.1	-

Intersection						
Int Delay, s/veh	0.1					
-						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		1		•	•	1
Traffic Vol, veh/h	0	17	0	1288	801	7
Future Vol, veh/h	0	17	0	1288	801	7
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None		None	-	None
Storage Length	-	0	-	-	-	75
Veh in Median Storage	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
	92	92	91	91	84	84
Peak Hour Factor		52	51	51	04	04
Peak Hour Factor		٥	٥	1	2	Δ
Heavy Vehicles, %	0	0 18	0 0	1 1415	2 954	0 8

Major/Minor	Minor2	Major1		Ма	Major2	
Conflicting Flow All	-	954	-	0	-	0
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.2	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.3	-	-	-	-
Pot Cap-1 Maneuver	0	317	0	-	-	-
Stage 1	0	-	0	-	-	-
Stage 2	0	-	0	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver		317	-	-	-	-
Mov Cap-2 Maneuver	r -	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	17.1	0	0
HCM LOS	С		

Minor Lane/Major Mvmt	NBT EBLn1	SBT	SBR
Capacity (veh/h)	- 317	-	-
HCM Lane V/C Ratio	- 0.058	-	-
HCM Control Delay (s)	- 17.1	-	-
HCM Lane LOS	- C	-	-
HCM 95th %tile Q(veh)	- 0.2	-	-

	٠	+	1	4	Ŧ	*	1	Ť	1	4	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	1.		٦	1+		1	1	1	1	1	1
Traffic Volume (veh/h)	55	53	267	73	57	30	248	508	86	23	626	43
Future Volume (veh/h)	55	53	267	73	57	30	248	508	86	23	626	43
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1 00	1.00	1.00	1 00	1.00	1.00	1 00	1.00	1.00	1 00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	1000	No	1000	1000	No	1000	1000		1000	1000		1000
Adj Sat Flow, veh/h/ln	1969 85	1969	1969 211	1969 96	1969 98	1969	1969	1969 564	1969 116	1969	1969 703	1969
Adj Flow Rate, veh/h	0.65	65 0.82	0.91	90 0.76	90 0.58	42 0.72	370 0.67	0.90	0.74	32 0.71	0.89	57 0.75
Peak Hour Factor	0.65	0.62 2	0.91	0.76	0.56	0.72	0.67	0.90	0.74	0.71	0.69	0.75
Percent Heavy Veh, % Cap, veh/h	292	2 94	2 304	ے 175	300	2 129	2 390	2 1213	ے 1028	2 388	2 790	2 670
Arrive On Green	0.23	94 0.23	0.23	0.23	0.23	0.23	0.14	0.62	0.62	0.40	0.40	0.40
Sat Flow, veh/h	0.23 1249	408	1323	1103	1308	0.23 560	1875	0.02 1969	1668	0.40 760	0.40 1969	1668
Grp Volume(v), veh/h	85	0	276	96	0	140	370	564	116	32	703 1969	57
Grp Sat Flow(s),veh/h/ln	1249	0	1731	1103	0	1868	1875	1969	1668	760		1668
Q Serve(g_s), s	5.3 10.7	0.0 0.0	12.7 12.7	7.3 20.0	0.0 0.0	5.4 5.4	10.9 10.9	13.4 13.4	2.5	2.3 2.3	28.9 28.9	1.8 1.8
Cycle Q Clear(g_c), s Prop lp Lano	1.00	0.0	0.76	20.0	0.0	5.4 0.30	1.00	13.4	2.5 1.00	2.3 1.00	20.9	1.0
Prop In Lane	292	0	398	175	0	429	390	1213	1028	388	790	670
Lane Grp Cap(c), veh/h	0.292	0.00	0.69	0.55	0.00	429 0.33	0.95	0.46	0.11	0.08	0.89	0.09
V/C Ratio(X)	292	0.00	398	175	0.00	429	390	0.40 1464	1240	484	1041	882
Avail Cap(c_a), veh/h HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	32.4	0.00	30.7	40.0	0.00	27.9	21.2	9.0	6.9	16.3	24.3	16.1
Incr Delay (d2), s/veh	0.5	0.0	5.1	3.6	0.0	0.4	32.6	0.3	0.0	0.1	7.8	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	1.5	0.0	5.4	2.1	0.0	2.3	7.3	4.3	0.0	0.0	13.2	0.6
Unsig. Movement Delay, s/veh		0.0	0.4	2.1	0.0	2.0	1.0	4.0	0.1	0.4	10.2	0.0
LnGrp Delay(d),s/veh	32.9	0.0	35.9	43.6	0.0	28.3	53.8	9.3	6.9	16.4	32.1	16.2
LnGrp LOS	C	A	00.0 D	D	A	20.0 C	00.0 D	A	A	B	C	B
Approach Vol, veh/h		361			236			1050			792	
Approach Delay, s/veh		35.2			34.6			24.7			30.3	
Approach LOS		D			C			C			C	
Timer - Assigned Phs	1	2		4	•	6		8			•	
Phs Duration (G+Y+Rc), s	18.7	41.6		26.7		60.3		26.7				
Change Period (Y+Rc), s	* 6.7	* 6.7		* 6.7		* 6.7		* 6.7				
Max Green Setting (Gmax), s	* 12	* 46		* 20		* 65		* 20				
Max Q Clear Time (g_c+I1), s	12.9	30.9		14.7		15.4		22.0				
Green Ext Time (p_c), s	0.0	4.0		0.8		3.8		0.0				
	0.0	T. U		0.0		0.0		0.0				
Intersection Summary			00.0									
HCM 6th Ctrl Delay			29.0									
HCM 6th LOS			С									
NL ()												

Notes

Int	tor	se	∩tı	nn
		SE		CH L

Int Delay, s/veh	3.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	•	1	1	1	Y	
Traffic Vol, veh/h	364	125	87	261	26	11
Future Vol, veh/h	364	125	87	261	26	11
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	50	150	-	0	-
Veh in Median Storage	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	88	45	45	76	40	40
Heavy Vehicles, %	2	0	0	2	0	0
Mvmt Flow	414	278	193	343	65	28

Major/Minor	Major1	Μ	ajor2	Ν	/linor1		
Conflicting Flow All	0	0	692	0	1143	414	
Stage 1	-	-	-	-	414	-	
Stage 2	-	-	-	-	729	-	
Critical Hdwy	-	-	4.1	-	6.4	6.2	
Critical Hdwy Stg 1	-	-	-	-	5.4	-	
Critical Hdwy Stg 2	-	-	-	-	5.4	-	
Follow-up Hdwy	-	-	2.2	-	3.5	3.3	
Pot Cap-1 Maneuver	-	-	912	-	223	643	
Stage 1	-	-	-	-	671	-	
Stage 2	-	-	-	-	481	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuver	r -	-	912	-	176	643	
Mov Cap-2 Maneuver	r -	-	-	-	176	-	
Stage 1	-	-	-	-	671	-	
Stage 2	-	-	-	-	379	-	

Approach	EB	WB	NB
HCM Control Delay, s	0	3.6	31.9
HCM LOS			D

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	224	-	-	912	-
HCM Lane V/C Ratio	0.413	-	-	0.212	-
HCM Control Delay (s)	31.9	-	-	10	-
HCM Lane LOS	D	-	-	В	-
HCM 95th %tile Q(veh)	1.9	-	-	0.8	-

Intersection						
Int Delay, s/veh	0.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		1		1	1	1
Traffic Vol, veh/h	0	15	0	842	929	37
Future Vol, veh/h	0	15	0	842	929	37
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	75

		•				• •	
Veh in Median Storage, #	0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	40	40	45	79	90	45	
Heavy Vehicles, %	0	0	0	2	2	0	
Mvmt Flow	0	38	0	1066	1032	82	

Major/Minor	Minor2	Μ	/lajor1		Major2		
Conflicting Flow All	-	1032	-	0	-	0	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	
Critical Hdwy	-	6.2	-	-	-	-	
Critical Hdwy Stg 1	-	-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	
Follow-up Hdwy	-	3.3	-	-	-	-	
Pot Cap-1 Maneuver	0	285	0	-	-	-	
Stage 1	0	-	0	-	-	-	
Stage 2	0	-	0	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver		285	-	-	-	-	
Mov Cap-2 Maneuver		-	-	-	-	-	
Stage 1	-	-	-	-	-	-	
Stage 2	-	-	-	-	-	-	

Approach	EB	NB	SB
HCM Control Delay, s	19.5	0	0
HCM LOS	С		

Minor Lane/Major Mvmt	NBT EBLn1	SBT	SBR
Capacity (veh/h)	- 285	-	-
HCM Lane V/C Ratio	- 0.132	-	-
HCM Control Delay (s)	- 19.5	-	-
HCM Lane LOS	- C	-	-
HCM 95th %tile Q(veh)	- 0.4	-	-

	٠	+	1	4	ł	*	1	t	1	4	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	1.	• • -	٦	ħ		1	1	1	1	1	1
Traffic Volume (veh/h)	86	63	267	73	48	30	187	508	86	23	597	43
Future Volume (veh/h)	86	63	267	73	48	30	187	508	86	23	597	43
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	4 00	1.00	1.00	4.00	1.00	1.00	4 00	1.00	1.00	4.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	1000	No	4000	1000	No	4000	1000	No	4000	1000	No	1000
Adj Sat Flow, veh/h/ln	1969	1969	1969	1969	1969	1969	1969	1969	1969	1969	1969	1969
Adj Flow Rate, veh/h	162	90	211	96	77	42	246	564	116	32	671	57
Peak Hour Factor	0.53	0.70	0.91	0.76	0.62	0.72	0.76	0.90	0.74	0.71	0.89	0.75
Percent Heavy Veh, %	2	2 132	2 310	2 196	2 303	2 165	2 337	2 1137	2	2 389	2 772	2 654
Cap, veh/h	348		0.25	0.25		0.25			964	0.39	0.39	
Arrive On Green	0.25 1273	0.25 523	0.25 1225	0.25 1078	0.25 1198	0.25 653	0.10	0.58	0.58 1668	0.39 760	0.39 1969	0.39
Sat Flow, veh/h							1875	1969				1668
Grp Volume(v), veh/h	162	0	301	96	0	119	246	564	116	32	671	57
Grp Sat Flow(s),veh/h/ln	1273	0	1748	1078	0	1851	1875	1969	1668	760	1969	1668
Q Serve(g_s), s	9.2	0.0	12.3	7.0	0.0	4.1	5.8	13.4	2.5	2.1	24.9	1.7
Cycle Q Clear(g_c), s	13.3	0.0	12.3	19.3	0.0	4.1	5.8	13.4	2.5	2.1	24.9	1.7
Prop In Lane	1.00	0	0.70	1.00	0	0.35	1.00	4407	1.00	1.00	770	1.00
Lane Grp Cap(c), veh/h	348	0	442	196	0	468	337	1137	964	389	772	654
V/C Ratio(X)	0.47	0.00	0.68 442	0.49 196	0.00	0.25 468	0.73 432	0.50 1611	0.12 1365	0.08 533	0.87 1145	0.09
Avail Cap(c_a), veh/h	348	0	442 1.00		0 1.00					535 1.00		971
HCM Platoon Ratio	1.00 1.00	1.00 0.00	1.00	1.00 1.00	0.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00	1.00	1.00 1.00	1.00 1.00
Upstream Filter(I)	28.9	0.00	26.7	35.3	0.00	23.6	1.00	9.9	7.6	15.3	22.2	15.1
Uniform Delay (d), s/veh	20.9 1.0	0.0	20.7 4.2	35.3 1.9	0.0	23.0 0.3	4.5	9.9 0.3	7.0 0.1	0.1	22.2 5.0	0.1
Incr Delay (d2), s/veh	0.0	0.0	4.Z 0.0	0.0	0.0	0.0	4.5 0.0	0.0	0.1	0.1	0.0	0.1
Initial Q Delay(d3),s/veh %ile BackOfQ(50%),veh/In	0.0 2.6	0.0	0.0 5.0	0.0 1.8	0.0	0.0 1.6	2.3	4.3	0.0	0.0	10.6	0.0
Unsig. Movement Delay, s/veh		0.0	5.0	1.0	0.0	1.0	2.5	4.5	0.7	0.5	10.0	0.0
LnGrp Delay(d),s/veh	29.8	0.0	30.9	37.2	0.0	23.9	21.3	10.2	7.6	15.3	27.2	15.2
LnGrp LOS	29.0 C	0.0 A	50.9 C	57.2 D	0.0 A	23.9 C	21.3 C	10.2 B	7.0 A	13.3 B	27.2 C	13.2 B
Approach Vol, veh/h	0	463	0	U	215	0	0	926	Λ	D	760	D
Approach Delay, s/veh		30.5			213			12.8			25.8	
Approach LOS		30.5 C			29.0 C			12.0 B			25.0 C	
					U	•					U	
Timer - Assigned Phs	1	2		4		6		8				
Phs Duration (G+Y+Rc), s	14.7 * 6.7	37.7 * 6.7		26.7 * 6.7		52.4 * 6.7		26.7 * 6.7				
Change Period (Y+Rc), s		* 46		* 20		* 65		* 20				
Max Green Setting (Gmax), s	* 12							21.3				
Max Q Clear Time (g_c+I1), s	7.8 0.3	26.9 4.1		15.3 0.9		15.4 3.8		21.3 0.0				
Green Ext Time (p_c), s	0.5	4.1		0.9		ა.0		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			22.0									
HCM 6th LOS			С									
N1 /												

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

					•	
In	tο	rs	0	<u>et</u>	in	n
	ιc	13		տ	IU	

Int Delay, s/veh	47.8					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1	1	1	•	Y	
Traffic Vol, veh/h	364	25	17	261	129	52
Future Vol, veh/h	364	25	17	261	129	52
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	50	150	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	88	45	45	76	40	40
Heavy Vehicles, %	2	0	0	2	0	0
Mvmt Flow	414	56	38	343	323	130

Major/Minor	Major1	Ν	/lajor2	М	linor1		
Conflicting Flow All	0	0	470	0	833	414	
Stage 1	-	-	-	-	414	-	
Stage 2	-	-	-	-	419	-	
Critical Hdwy	-	-	4.1	-	6.4	6.2	
Critical Hdwy Stg 1	-	-	-	-	5.4	-	
Critical Hdwy Stg 2	-	-	-	-	5.4	-	
Follow-up Hdwy	-	-	2.2	-	3.5	3.3	
Pot Cap-1 Maneuver	-	-	1102	-	341	643	
Stage 1	-	-	-	-	671	-	
Stage 2	-	-	-	-	668	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuver	· -	-	1102	-	329	643	
Mov Cap-2 Maneuver	· -	-	-	-	329	-	
Stage 1	-	-	-	-	671	-	
Stage 2	-	-	-	-	645	-	

Approach	EB	WB	NB
HCM Control Delay, s	0	0.8	136.9
HCM LOS			F

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	383	-	-	1102	-
HCM Lane V/C Ratio	1.181	-	-	0.034	-
HCM Control Delay (s)	136.9	-	-	8.4	-
HCM Lane LOS	F	-	-	А	-
HCM 95th %tile Q(veh)	18.1	-	-	0.1	-

In	tΔ	rs	Δ	<u>^1</u>	п	2	n
	ເບ	13	⊂	u	u	U	

Int Delay, s/veh	4.7					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		1		†	•	1
Traffic Vol, veh/h	0	78	0	781	929	8
Future Vol, veh/h	0	78	0	781	929	8
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	75
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	40	40	45	84	83	45
Heavy Vehicles, %	0	0	0	2	2	0
Mvmt Flow	0	195	0	930	1119	18

Major/Minor	Minor2	Μ	ajor1	Ма	ajor2	
Conflicting Flow All	-	1119	-	0	-	0
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.2	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.3	-	-	-	-
Pot Cap-1 Maneuver	0	254	0	-	-	-
Stage 1	0	-	0	-	-	-
Stage 2	0	-	0	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver		254	-	-	-	-
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	54.2	0	0
HCM LOS	F		

Minor Lane/Major Mvmt	NBT EBLn1	SBT	SBR
Capacity (veh/h)	- 254	-	-
HCM Lane V/C Ratio	- 0.768	-	-
HCM Control Delay (s)	- 54.2	-	-
HCM Lane LOS	- F	-	-
HCM 95th %tile Q(veh)	- 5.6	-	-

Movement	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	TR	L	TR	L	Т	R	L	Т	R	
Maximum Queue (ft)	84	385	194	144	104	142	58	56	379	250	
Average Queue (ft)	28	146	64	33	42	63	10	11	218	45	
95th Queue (ft)	65	292	152	100	82	121	37	39	349	158	
Link Distance (ft)		606		891		1088			855		
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	225		225		225		225	150		100	
Storage Blk Time (%)		5	1	0					27	0	
Queuing Penalty (veh)		3	0	0					22	0	

Intersection: 2: Site Drive & Golf Club Road

Movement	WB	NB
Directions Served	L	LR
Maximum Queue (ft)	28	35
Average Queue (ft)	4	10
95th Queue (ft)	19	29
Link Distance (ft)		413
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)	150	
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 3: Latson Road & Site Drive

Movement	EB
Directions Served	R
Maximum Queue (ft)	22
Average Queue (ft)	4
95th Queue (ft)	17
Link Distance (ft)	405
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Network Summary

Movement	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	TR	L	TR	L	Т	R	L	Т	R	
Maximum Queue (ft)	297	409	304	291	342	397	56	123	328	212	
Average Queue (ft)	95	158	140	83	159	187	19	28	186	37	
95th Queue (ft)	211	357	302	230	313	327	48	82	287	126	
Link Distance (ft)		606		891		1088			855		
Upstream Blk Time (%)		0									
Queuing Penalty (veh)		1									
Storage Bay Dist (ft)	225		225		225		225	150		100	
Storage Blk Time (%)	2	10	14	0	10	3			26		
Queuing Penalty (veh)	7	15	17	0	101	13			26		

Intersection: 2: Site Drive & Golf Club Road

Movement	EB	WB	NB
Directions Served	Т	L	LR
Maximum Queue (ft)	19	29	45
Average Queue (ft)	1	6	17
95th Queue (ft)	10	25	38
Link Distance (ft)	674		413
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)		150	
Storage Blk Time (%)	0		
Queuing Penalty (veh)	0		

Intersection: 3: Latson Road & Site Drive

Movement	EB
Directions Served	R
Maximum Queue (ft)	26
Average Queue (ft)	10
95th Queue (ft)	27
Link Distance (ft)	405
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Network Summary

Movement	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	TR	L	TR	L	Т	R	L	Т	R	
Maximum Queue (ft)	115	278	143	131	298	427	140	211	546	250	
Average Queue (ft)	36	127	58	36	131	148	23	26	244	39	
95th Queue (ft)	88	244	123	99	295	477	88	123	432	151	
Link Distance (ft)		606		891		1088			855		
Upstream Blk Time (%)						0					
Queuing Penalty (veh)						4					
Storage Bay Dist (ft)	225		225		225		225	150		100	
Storage Blk Time (%)		3			8	0			32		
Queuing Penalty (veh)		2			52	1			22		

Intersection: 2: Site Drive & Golf Club Road

Movement	EB	WB	NB
Directions Served	R	L	LR
Maximum Queue (ft)	22	100	56
Average Queue (ft)	2	21	17
95th Queue (ft)	12	58	43
Link Distance (ft)			413
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)	50	150	
Storage Blk Time (%)		0	
Queuing Penalty (veh)		0	

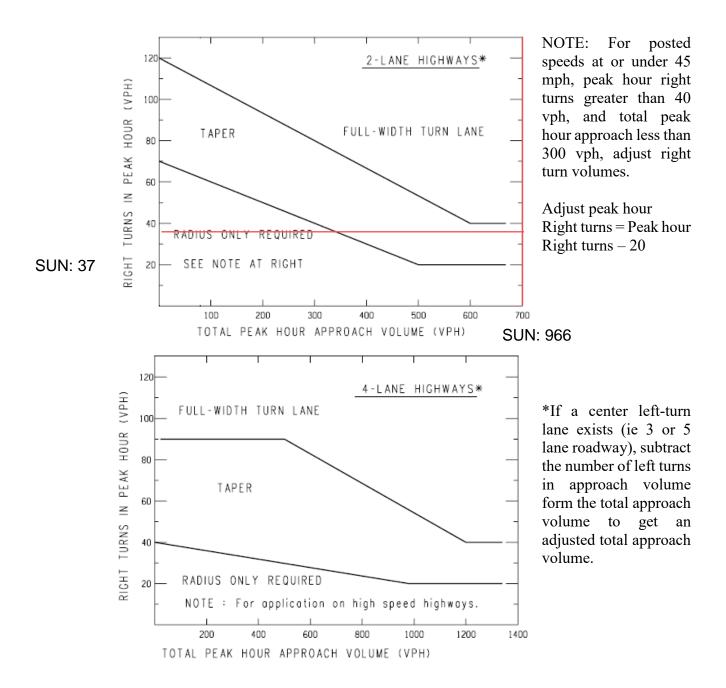
Intersection: 3: Latson Road & Site Drive

Movement	EB	NB
Directions Served	R	Т
Maximum Queue (ft)	26	137
Average Queue (ft)	6	14
95th Queue (ft)	22	167
Link Distance (ft)	405	670
Upstream Blk Time (%)		0
Queuing Penalty (veh)		0
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Movement	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	TR	L	TR	L	Т	R	L	Т	R	
Maximum Queue (ft)	165	325	202	197	180	212	44	125	429	249	
Average Queue (ft)	47	123	72	35	79	93	16	19	208	26	
95th Queue (ft)	116	247	169	106	145	160	41	73	348	107	
Link Distance (ft)		606		891		1088			855		
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	225		225		225		225	150		100	
Storage Blk Time (%)	0	2	2	0	0	0			27		
Queuing Penalty (veh)	1	3	2	0	0	0			18		

Intersection: 2: Site Drive & Golf Club Road


Movement	WB	NB
Directions Served	L	LR
Maximum Queue (ft)	35	399
Average Queue (ft)	7	102
95th Queue (ft)	27	316
Link Distance (ft)		413
Upstream Blk Time (%)		6
Queuing Penalty (veh)		0
Storage Bay Dist (ft)	150	
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 3: Latson Road & Site Drive

Movement	EB
Directions Served	R
Maximum Queue (ft)	217
Average Queue (ft)	47
95th Queue (ft)	152
Link Distance (ft)	405
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Network Summary

LATSON ROAD & SITE DRIVE RIGHT-TURN LANE WARRANT - PHASE II

Sample Problem: The Design Speed is 55 mph. The Peak Hour Approach Volume is 300 vph. The Number of Right Turns in the Peak Hous is 100 vph. Determine if a right turn lane is recommended.

Solution: Figure indicates that the intersection of 300 vph and 100 vph is located above the upper trend line; thus, a right-turn lane may be recommended.

PROPERTY DESCRIPTION:

PARCEL: 4711-05-200-002

Part of the Northeast 1/4 of the Northeast Fractional 1/4 of Section 5, T2N-R5E, Genoa Township, Livingston County, Michigan, more particularly described as follows: BEGINNING at the Northeast corner of Section 5; thence along the centerline of Latson Road (33 foot wide 1/2 Right of Way) and the East line of Section 5, S 01*15'41" E, 1627.92 feet; thence along the North line of "ROLLING RIDGE I", Livingston County Condominium Subdivision Plan No. 134, as recorded in Livingston County Records and the South line of the Northeast 1/4 of the Northeast fractional 1/4 of Section 5, as previously surveyed and monumented, S 87°47'59" W, 1284.34 feet; thence along the common property line per Agreement recorded in Liber 1098, Page 22, Livingston County Records, N 02°36'49" W, 1107.42 feet; thence N 88°30'30" E (recorded as East), 200.00 feet; thence N 02°36'49" W (recorded as North), 536.70 feet; thence along the centerline of Golf Club Road (66 foot wide Right of Way) and the North line of Section 5, as previously surveyed and monumented, N 88°30'31" E. 1122.98 feet, to the POINT OF BEGINNING, containing 46.50 acres, more or less, and subject to the rights of the public over the existing Latson Road and Golf Club Road. Also subject to any other easements or restrictions of record.

CONSTRUCTION NOTES

THE CONTRACTOR SHALL COMPLY WITH THE FOLLOWING NOTES AND ANY WORK INVOLVED SHALL BE CONSIDERED INCIDENTAL TO THE CONTRACT. 1. THE CONTRACTOR SHALL HOLD HARMLESS THE DESIGN PROFESSIONAL, MUNICIPALITY, COUNTY, STATE AND ALL OF ITS SUB CONSULTANTS, PUBLIC AND PRIVATE UTILITY COMPANIES, AND LANDOWNERS FOR DAMAGES TO INDIVIDUALS AND PROPERTY, REAL OR OTHERWISE, DUE TO THE OPERATIONS OF THE CONTRACTOR AND/OR THEIR SUBCONTRACTORS.

DO NOT SCALE THESE DRAWINGS AS IT IS A REPRODUCTION AND SUBJECT TO DISTORTION.

3. A GRADING PERMIT FOR SOIL EROSION-SEDIMENTATION CONTROL SHALL BE OBTAINED FROM THE GOVERNING AGENCY PRIOR TO THE START OF CONSTRUCTION.

4. IF DUST PROBLEM OCCURS DURING CONSTRUCTION, CONTROL WILL BE PROVIDED BY AN APPLICATION OF WATER, EITHER BY SPRINKLER OR TANK TRUCK. 5. ALL CONSTRUCTION AND MATERIALS SHALL BE IN ACCORDANCE WITH LOCAL MUNICIPAL STANDARDS AND SPECIFICATIONS.

6. THE CONTRACTOR IS RESPONSIBLE FOR OBTAINING ALL REQUIRED TOWNSHIP, COUNTY, AND STATE OF MICHIGAN PERMITS

7. PAVED SURFACES, WALKWAYS, SIGNS, LIGHTING AND OTHER STRUCTURES SHALL BE MAINTAINED IN A SAFE, ATTRACTIVE CONDITION AS ORIGINALLY DESIGNED AND CONSTRUCTED.

8. ALL BARRIER-FREE FEATURES SHALL BE CONSTRUCTED TO MEET ALL LOCAL, STATE AND A.D.A. REQUIREMENTS

9. ANY DISCREPANCY IN THIS PLAN AND ACTUAL FIELD CONDITIONS SHALL BE REPORTED TO THE DESIGN ENGINEER PRIOR TO THE START OF CONSTRUCTION. CONTRACTOR SHALL BE RESPONSIBLE FOR VERIFICATION OF ALL SETBACKS, EASEMENTS AND DIMENSIONS SHOWN HEREON BEFORE BEGINNING CONSTRUCTION.

10. THE CONTRACTOR SHALL CONTACT ALL OWNERS OF EASEMENTS, UTILITIES AND RIGHTS-OF-WAY, PUBLIC OR PRIVATE, PRIOR TO THE START OF CONSTRUCTION.

11. THE CONTRACTOR SHALL COORDINATE WITH ALL OWNERS TO DETERMINE THE LOCATION OF EXISTING LANDSCAPING, IRRIGATION LINES & PRIVATE UTILITY LINES. THE CONTRACTOR IS RESPONSIBLE FOR ANY DAMAGE TO EXISTING LANDSCAPING, IRRIGATION LINES, AND PRIVATE UTILITY LINES.

12. THE CONTRACTOR SHALL REMOVE ALL TRASH AND DEBRIS FROM THE SITE UPON COMPLETION OF THE PROJECT. 13. THE CONTRACTOR SHALL MAINTAIN THE SITE IN A MANNER SO THAT WORKMEN AND PUBLIC SHALL BE PROTECTED FROM INJURY, AND ADJOINING

PROPERTY PROTECTED FROM DAMAGE. 14. THE CONTRACTOR SHALL KEEP THE AREA OUTSIDE THE "CONSTRUCTION LIMITS" BROOM CLEAN AT ALL TIMES.

15. THE CONTRACTOR SHALL CALL MISS DIG A MINIMUM OF 72 HOURS PRIOR TO THE START OF CONSTRUCTION.

16. ALL EXCAVATION UNDER OR WITHIN 3 FEET OF PUBLIC PAVEMENT, EXISTING OR PROPOSED SHALL BE BACKFILLED AND COMPACTED WITH SAND (MDOT CLASS II).

17. ALL PAVEMENT REPLACEMENT AND OTHER WORKS COVERED BY THESE PLANS SHALL BE DONE IN ACCORDANCE WITH THE REQUIREMENTS OF THE TOWNSHIP, INCLUDING THE LATEST MICHIGAN DEPARTMENT OF TRANSPORTATION (MDOT) SPECIFICATIONS FOR HIGHWAY CONSTRUCTION.

18. THE CONTRACTOR IS RESPONSIBLE FOR ALL DAMAGE TO EXISTING UTILITIES.

19. NO ADDITIONAL COMPENSATION WILL BE PAID TO THE CONTRACTOR FOR ANY DELAY OR INCONVENIENCE DUE TO THE MATERIAL SHORTAGES OR RESPONSIBLE DELAYS DUE TO THE OPERATIONS OF SUCH OTHER PARTIES DOING WORK INDICATED OR SHOWN ON THE PLANS OR IN THE SPECIFICATION OR FOR ANY REASONABLE DELAYS IN CONSTRUCTION DUE TO THE ENCOUNTERING OR EXISTING UTILITIES THAT MAY OR MAY NOT BE SHOWN ON THE PLANS.

20. DURING THE CONSTRUCTION OPERATIONS, THE CONTRACTOR SHALL NOT PERFORM WORK BY PRIVATE AGREEMENT WITH PROPERTY OWNERS ADJACENT TO THE PROJECT.

21. IF WORK EXTENDS BEYOND NOVEMBER 15, NO COMPENSATION WILL BE DUE TO THE CONTRACTOR FOR ANY WINTER PROTECTION MEASURES THAT MAY BE REQUIRED BY THE ENGINEER.

--([]]--

22. NO TREES ARE TO BE REMOVED UNTIL MARKED IN THE FIELD BY THE ENGINEER.

23. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ANY DAMAGE TO THE PROPERTY BEYOND THE CONSTRUCTION LIMITS INCLUDING BUT NOT LIMITED TO EXISTING FENCE, LAWN, TREES AND SHRUBBERY.

24. ALL AREAS DISTURBED BY THE CONTRACTOR BEYOND THE NORMAL CONSTRUCTION LIMITS OF THE PROJECT SHALL BE SODDED OR SEEDED AS SPECIFIED OR DIRECTED BY THE ENGINEER.

25. ALL ROOTS, STUMPS AND OTHER OBJECTIONABLE MATERIALS SHALL BE REMOVED AND THE HOLE BACKFILLED WITH SUITABLE MATERIAL. WHERE GRADE CORRECTION IS REQUIRED, THE SUBGRADE SHALL BE CUT TO CONFORM TO THE CROSS-SECTION AS SHOWN IN THE PLANS. 26. TRAFFIC SHALL BE MAINTAINED DURING CONSTRUCTION. THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROVIDING ALL SIGNS AND TRAFFIC CONTROL

DEVICES. FLAG PERSONS SHALL BE PROVIDED BY THE CONTRACTOR IF DETERMINED NECESSARY BY THE ENGINEER. ALL SIGNS SHALL CONFORM TO THE MICHIGAN MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES AT NO COST TO THE TOWNSHIP. NO WORK SHALL BE DONE UNLESS THE APPROPRIATE TRAFFIC CONTROL DEVICES ARE IN PLACE.

27. ALL DEMOLISHED MATERIALS AND SOIL SPOILS SHALL BE REMOVED FROM THE SITE AT NO ADDITIONAL COST, AND DISPOSED OF IN ACCORDANCE WITH LOCAL, STATE AND FEDERAL REGULATIONS.

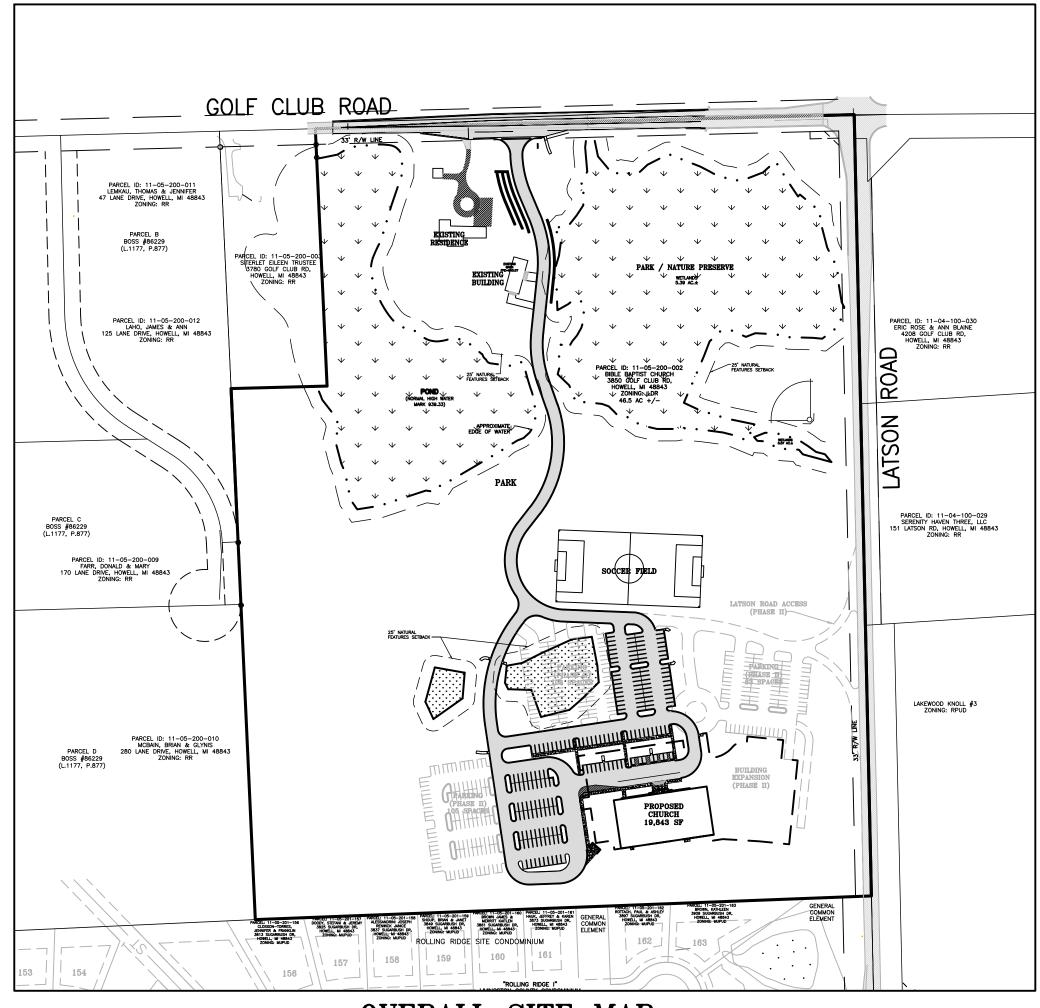
28. AFTER REMOVAL OF TOPSOIL, THE SUBGRADE SHALL BE COMPACTED TO 95% OF ITS UNIT WEIGHT. 29. ALL GRADING IN THE PLANS SHALL BE DONE AS PART OF THIS CONTRACT. ALL DELETERIOUS MATERIAL SHALL BE REMOVED FROM THE SUBGRADE PRIOR

TO COMPACTING.

30. NO SEEDING SHALL BE DONE AFTER OCTOBER 15 WITHOUT APPROVAL OF THE ENGINEER.

31. ANY EXISTING APPURTENANCES SUCH AS MANHOLES, GATE VALVES, ETC. SHALL BE ADJUSTED TO THE PROPOSED GRADE AND SHALL BE CONSIDERED INCIDENTAL TO THE CONTRACT.

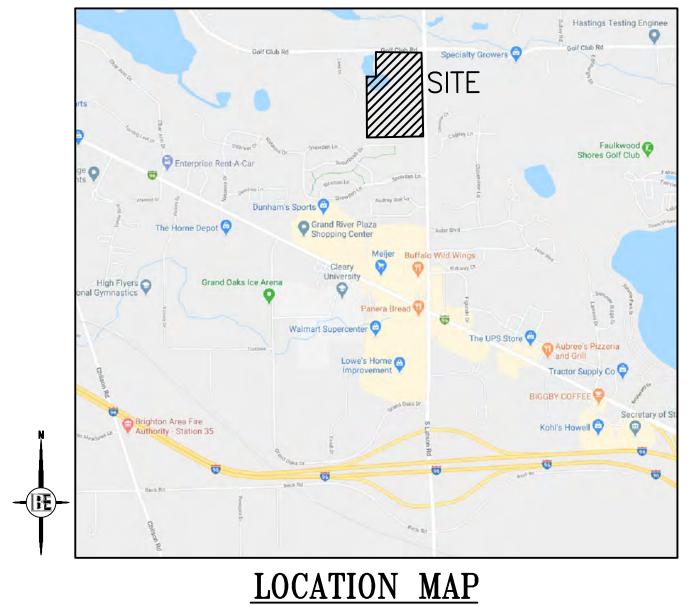
32. SOIL EROSION MEASURES SHALL BE MAINTAINED BY THE CONTRACTOR UNTIL VEGETATION HAS BEEN RE-ESTABLISHED.


33. ALL PERMANENT SIGNS AND PAVEMENT MARKINGS SHALL BE INSTALLED IN ACCORDANCE WITH THE LATEST REVISION OF THE MICHIGAN MUTCD MANUAL AND SHALL BE INCIDENTAL TO THE CONTRACT. 34. ACCESS ROADS TO THE SITE SHALL BE MAINTAINED DURING CONSTRUCTION AND SHALL BE CONSTRUCTED TO BE CAPABLE OF SUPPORTING THE IMPOSED

LOAD OF FIRE APPARATUS WEIGHING AT LEAST 75,000 POUNDS.

INDEMNIFICATION STATEMENT

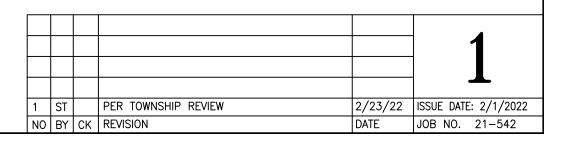
THE CONTRACTOR SHALL HOLD HARMLESS THE DESIGN PROFESSIONAL, MUNICIPALITY, COUNTY, STATE AND ALL OF ITS SUB CONSULTANTS, PUBLIC AND PRIVATE UTILITY COMPANIES, AND LANDOWNERS FOR DAMAGES TO INDIVIDUALS AND PROPERTY, REAL OR OTHERWISE, DUE TO THE OPERATIONS OF THE CONTRACTOR AND/OR THEIR SUBCONTRACTORS.


SITE PLAN FOR BIBLE BAPTIST CHURCH PART OF NE QUARTER, SECTION 5 GENOA TOWNSHIP, LIVINGSTON COUNTY, MI

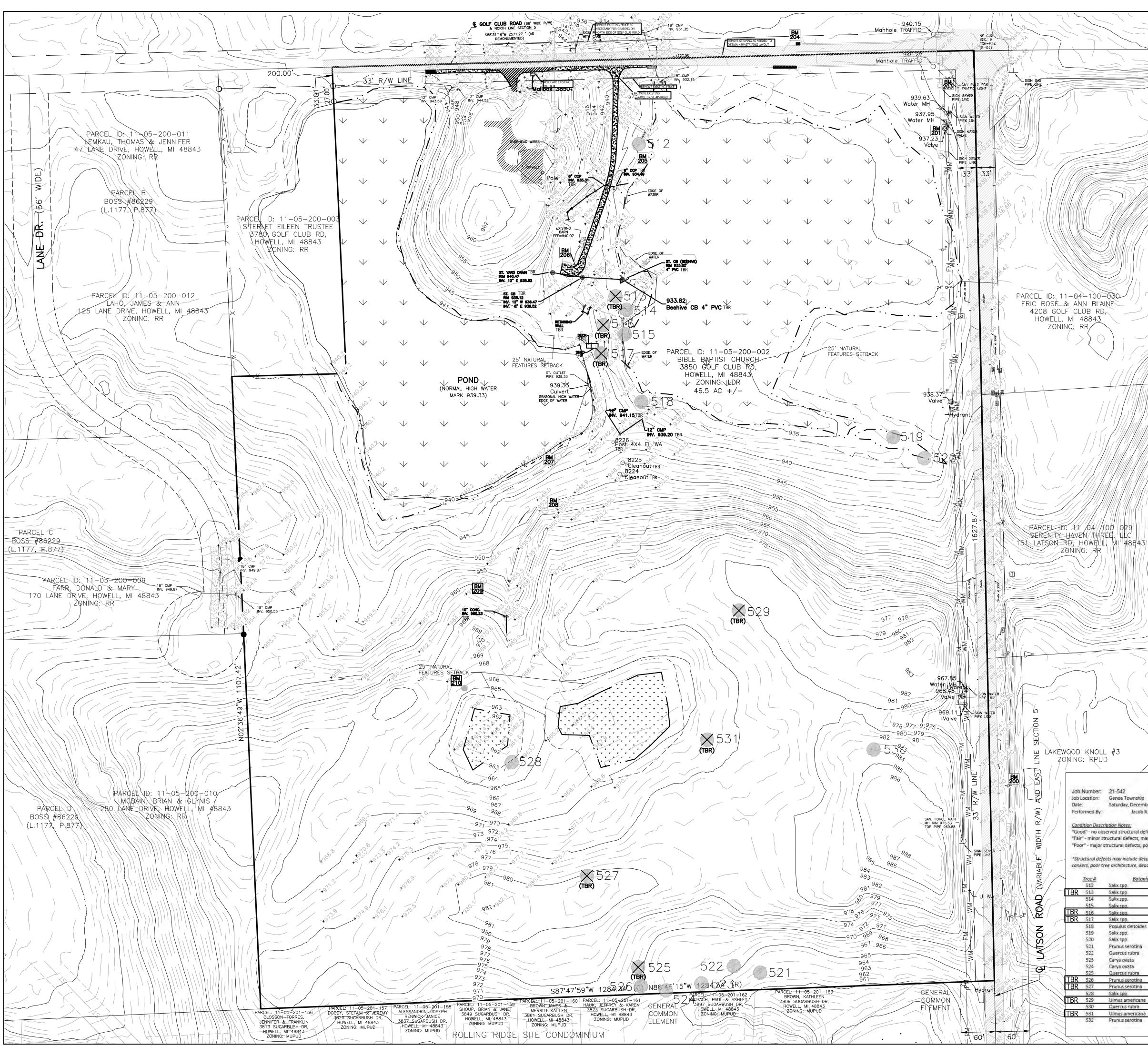
OVERALL SITE MAP NO SCALE

APPLICANT/OWNER:

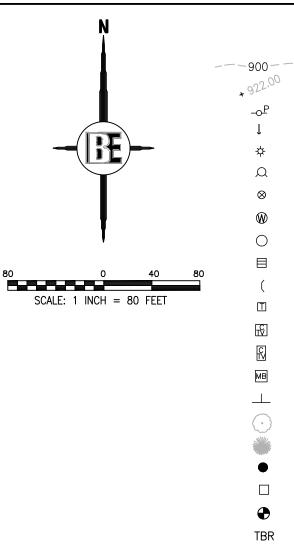
HOWELL, MI 48843


NO SCALE

SHEET INDEX								
SHEET NO.	DESCRIPTION							
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	COVER SHEET EXISTING CONDITIONS & DEMOLITION PLAN NATURAL FEATURES PLAN OVERALL SITE PLAN CHURCH SITE PLAN UTILITY PLAN GRADING PLAN DRAINAGE PLAN SESC PLAN LANDSCAPE PLAN GOLF CLUB ROAD APPROACH FOREBAY DETAILS CONSTRUCTION DETAILS MHOG STANDARD WATERMAIN DETAILS MHOG STANDARD WATERMAIN DETAILS							
	LIGHTING PLANS – GASSER BUSH							
1 2	PHOTOMETRIC PLAN PHOTOMETRIC PLAN							
ARCHITEC	TURAL PLANS – JEFFREY PARKER ARCHITECTS							
A1.0 A3.0	FLOOR PLAN EXTERIOR ELEVATIONS							


BIBLE BAPTIST CHURCH 2258 EAST HIGHLAND ROAD CONTACT: MR. TIM CHRISTOSON PHONE: 517-715-9223

PREPARED BY:



FOR SITE PLAN APPROVAL ONLY! NOT TO BE USED AS CONSTRUCTION DRAWINGS

<u>LEGEND</u>

EXISTING CONTOUR EXISTING SPOT ELEVATION POWER POLE GUY WIRE LIGHT POLE HYDRANT WATER GATE VALVE WATER MANHOLE MANHOLE STORM CATCH BASIN (SQUARE) STORM INVERT TELEPHONE RISER CABLE TV RISER U.G. CABLE TV MARKER MAILBOX SIGN DECIDUOUS TREE CONIFEROUS TREE STEEL ROD OR PIPE FOUND WOOD LATH SET SECTION CORNER TO BE REMOVED

GENERAL SURVEY NOTES:

- 1. WETLANDS FLAGGED AND TIED OUT BY BOSS ENGINEERING SPRING 2019. 2. BEARINGS ARE BASED ON MICHIGAN STATE PLANE COORDINATE SYSTEM, SOUTH ZONE.
- 3. SUBSURFACE UTILITIES NOT LOCATED FOR THIS SURVEY MAY EXIST. IT IS THE RESPONSIBILITY OF THE OWNER OF THE RESPECTIVE UTILITY TO ACCURATELY LOCATE SUCH UTILITIES.
- 4. EASEMENTS OR RESTRICTIONS OF RECORD NOT DEPICTED ON THIS DRAWING MAY EXIST.
- 5. ELEVATIONS WERE ESTABLISHED FROM GPS OBSERVATION, AND USING OPUS POST-PROCESS SYSTEM. (NAVD88 DATUM)
- 6. CONTOURS ARE SHOWN AT 1 FOOT INTERVALS.
- 7. THE LOCATIONS OF STORM SEWER, SANITARY SEWER & WATERMAIN, AS SHOWN ON THIS DRAWING ARE APPROXIMATE. THE LOCATIONS ARE BASED ON PHYSICAL FIELD LOCATIONS OF STRUCTURES.
- 8. ALL WORK SHALL BE IN ACCORDANCE WITH THE STANDARDS AND SPECIFICATIONS OF THE MUNICIPALITY, THE COUNTY, AND THE STATE OF MICHIGAN.
- 9. ALLOW THREE WORKING DAYS BEFORE YOU DIG, CALL MISS DIG TOLL FREE 1-800-482-7171.

SITE BENCHMARKS (NAVD88 DATUM):

-BM #200 = NAIL/TAG W/S P.POLE E/S LASTON RD. 785'± NORTH OF CONOVER CT.. ELEV.=971.41 -BM #201 = ARROW ON HYD W/S OF LASTON RD. 135'± SOUTH OF GOLF CLUB RD.. ELEV.=939.50 -BM #203 = FD. R.R. E/S OF GUY POLE W/S OF LASTON RD. 44'± SOUTH OF GOLF CLUB RD.. ELEV.=942.12 -BM #205 = PK NAIL/TAG W/S 40" WILLOW TREE 170'± SOUTH OF GOLF CLUB RD. & 160'± NORTH OF BARN. ELEV.=935.10 -BM #206 = LANDSCAPE SPIKE SET S/E CORNER OF POLE BARN. ELEV.=940.32 -BM #207 = PK NAIL/TAG S/S 12" MAPLE TREE S/S OF POND. ELEV.=945.31 -BM #208 = PK NAIL/TAG SET 10" PINE TREE 50'± EAST OF TWO TRACK RUNNING N&S & 150'± SOUTH OF POND, N/S OF TWO TRACK RUNNING E&W.

ELEV.=954.73 -BM #209 = PK NAIL/TAG S/S 12" ELM TREE 142'± SOUTH OF POND.

ELEV.=959.69 -BM #210 = PK NAIL/TAG E/S 8" PINE TREE 330'± SOUTH OF POND. ELEV.=966.83

TOPOGRAPHIC SURVEY NOTE:

TOPOGRAPHIC SURVEY OF GOLF CLUB ROAD AND LATSON ROAD PREPARED BY BOSS ENGINEERING. TOPOGRAPHY FOR THE SUBJECT SITE IS GENERATED FROM THE LIVINGSTON COUNTY GIS TOPO.

Good

Good

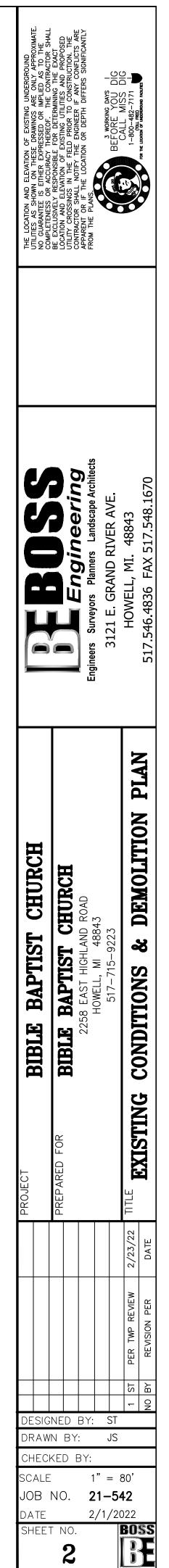
Good

Major dieback, canker rot, lost limbs

Poor

Good

		Inventory of Significan	nt Trees w	ithin Pr	oject Area		
ber:	21-542	Bible Baptist Church					
ont	Genoa Township	Contraction and					
	Saturday, December 11, 2021						
By:	Jacob R. Hamilton	Forestry Registration No.					
1.0		461	19				
Descr	iption Notes:						
o ab	served structural defects*						
nor st	tructural defects, marginal form, som	ne insect activity noted*					
ajors	structural defects, poor form, insect i	infested*					
1	CO COLL SED STREET OF TO POSSE						
l defe	ects may include decayed wood, crac	ks, roat problems, weak branch u	nions				
	ee architecture, dead/failed branche	The second se					
#	Botanical Name	Common Name	Dia.	Type	Other Dia.	Condition	Comments
	Salix spp:	Willow Sp.	53		2	Good	
6	Salix spp:	Willow Sp.	37			Poor	Major lean, cankers, epicormic branching
6	Salix spp.	Willow Sp.	41		10 million (1997)	Fair	Leaning
1	Salix spp.	Willow Sp.	36	Twin	20	Good	Leaning
1	Salix sop.	Willow Sp.	36	1.00	1000	Good	
с	Salix spp.	Willow Sp.	37		hand the	Fair	Lost large twin, canker
5	Populus deltoides	Eastern Cottonwood	24			Good	
10.0	Salix spp.	Willow Sp.	28			Good	
6.1	Salix spp.	Willow Sp.	25			Good	
	Prunus serotina	Black Cherry	35			Good	
2	Quercus rubra	Red Oak	26			Good	
i.	Carya ovata	Shagbark Hickory	25			Good	
	Carya ovata	Shagbark Hickory	32			Good	
	Quercus rubra	Red Oak	24			Good	ST
1	Prunus serotina	Black Cherry	34			Poor	Major canker, dieback


Black Cherry

Willow Sp.

American Elm Red Oak

American Elm

Black Cherry

Γ		$\overline{}$
$\langle \rangle$	1111	L

Salix spp.

Ulmus americana

Prunus serotina

NATURAL FEATURES NARRATIVE:

SEVERAL NATURAL FEATURES WERE IDENTIFIED DURING AN ON-SITE VISIT TO THE PROPERTY ON AUGUST 23, 2019 THAT INCLUDE WETLANDS AND A VARIETY OF WOODLAND STANDS. BELOW IS A BRIEF DESCRIPTION OF EACH NATURAL FEATURE, LABELED AS ZONES "A-V". ALTHOUGH THE TOTAL SITE IS MEASURED AT 46.88 ACRES, THE ZONES DESCRIBED BELOW ARE APPROXIMATELY 41.11 ACRES WHEN ADDED TOGETHER. NOTE THAT EACH ZONE IS MEASURED TO AN APPROXIMATE SIZE AND THAT ZONES ARE SEPARATED BY A PATH THAT IS ROUGHLY 12' WIDE AND IS NOT ACCOUNTED FOR IN THE CALCULATIONS.

ZONE "A"

AN ESTIMATED 4.62 ACRE "FRESHWATER POND", AS DESCRIBED BY THE NATIONAL WETLANDS INVENTORY, IS POSITIONED ON SITE AND CONTINUES ONTO THE NEIGHBORING LOT TO THE WEST. THE ON-SITE ACREAGE IS ESTIMATED TO BE 3.88 ACRES. THE POND EDGE IS MOWN LAWN AND HAS A SOUTHERN BORDER OF NORWAY MAPLE TREES, AND A WESTERN BORDER OF BLACK CHERRY, AMERICAN ELM, VARIOUS OAKS AND SPRUCE TREES, SIZES RANGING FROM 4-18" AT DBH WITH TREES BEING SPACED AN AVERAGE OF 12' APART. THE POND COLLECTS STORMWATER FROM ROUGHLY 9 ACRES OF LAND FROM THE WEST AND SOUTH, WITH SLOPES RANGING FROM 10-20%.

ZONE "B"

AT APPROXIMATELY 0.9 ACRES IN SIZE, THIS ZONE IS COMPOSED OF WAWASEE LOAM SOILS WITH SLOPES BETWEEN 6-12%. TREE SPECIES INCLUDE AN EQUAL MIX OF BLACK WALNUT, BLACK CHERRY, AMERICAN ELM, COTTONWOOD, AND BITTERNUT HICKORY SIZES RANGING FROM 6"-30" AND AVERAGING ABOUT 10" DBH. THE UNDERSTORY IS MOSTLY NON-EXISTENT BUT CONTAINS A SCATTERING OF HONEYSUCKLE AND VARIOUS PATCHES OF HERBACEOUS MATERIAL. AN ADDITIONAL AND APPROXIMATE 2.17 ACRES OF MANAGED PRIVATE PROPERTY IS FOUND TO THE WEST AND SOUTH OF THIS ZONE AND CONTAINS WAWASEE LOAM SOIL THAT SLOPES AT 6-12% TOWARDS THE POND IN ZONE "A." A PORTION OF VEGETATION IN THIS AREA WILL BE REMOVED FOR THE DRIVEWAY AND/OR RETAINING WALLS.

ZONE "C"

ZONE "C" IS A SMALL WOODLAND POCKET APPROXIMATELY 0.17 ACRES IS SIZE IS COMPOSED OF BLACK LOCUST, VARIOUS LARGE WILLOWS, AND BOXELDERS. TREES RANGE FROM 4-22" AT DBH. THIS POCKET IS IN A FLAT AREA THAT BORDERS FRESHATER EMERGENT WETLANDS TO THE EAST, AND CONTAINS CARLISLE MUCK SOILS, WHICH ARE HYDRIC IN NATURE.

ZONE "D"

ZONE "D" IS SET WITHIN A MANAGED SPACE NEXT TO AN OUTBUILDING, IS APPROXIMATELY 0.13 ACRES IN SIZE, AND HAS MOWN LAWN AS AN UNDERSTORY. SOILS ARE COMPOSED OF WAWASEE LOAMS AND THERE IS A STAND OF MATURE NORWAY SPRUCE TREES THAT ARE ROUGHLY 12" AT DBH AND SPACED OUT ABOUT 10-15' APART. A PORTION OF VEGETATION IN THIS AREA WILL BE REMOVED FOR THE DRIVEWAY AND/OR RETAINING WALLS.

ZONE "E"

A FRESHWATER EMERGENT WETLAND THAT IS APPROXIMATELY 5.45 ACRES IN SIZE WAS IDENTIFIED IN ZONE "E". THE AREA IS COMPOSED OF CARLISLE MUCK SOILS AND IS DOMINATED BY REED CANARY GRASS, PHRAGMITES, BROADLEAF CATTAIL, AND A VARIETY OF FORBES AND RUSHES. THIS WETLAND COLLECTS A LARGE AMOUNT OF STORMWATER RUNOFF FROM THE CONIFER STAND TO THE SOUTH, AND FROM THE ADJACENT ROAD SYSTEMS. MANICURED LAWN BORDERS THE NORTHERN AND EASTERN EDGES OF THIS ZONE AND MAKE UP APPROXIMATELY 1.22 ACRES.

ZONE "F"

ZONE "F" IS ANOTHER MANAGED AREA WITH MANICURED LAWN THAT IS APPROXIMATELY 0.43 ACRES IN SIZE AND HAS A SERIES OF NORWAY SPRUCE TREES PLANTED IN A DOUBLE ROW. THE TREES ARE ROUGHLY 12" AT DBH AND SPACED ROUGHLY 15' APART. SOILS ARE WAWASEE LOAMS AND SLOPING EAST TOWARDS THE WETLAND IN ZONE "E". AT THE EASTERN EDGE OF THIS ZONE, THERE ARE SEVERAL LARGE WILLOW TREES AND BLACK WALNUTS, SOME OF WHICH MAY QUALIFY AS LANDMARK TREES. A PORTION OF VEGETATION IN THIS AREA WILL BE REMOVED FOR THE DRIVEWAY AND/OR RETAINING WALLS.

ZONE "G"

ZONE "G" IS A FILL AREA OF APPROXIMATELY 1.16 ACRES THAT WAS FORMERLY USED AS A SPORTS FIELD. IT HAS SINCE BECOME OVERGROWN WITH A VARIETY OF MEADOW FORBES AND GRASSES.

ZONE "H"

ZONE "H" IS AN APPROXIMATELY 0.07 ACRE FRESHWATER EMERGENT/FORESTED WETLAND. THERE ARE POCKETS OF LARGE COTTONWOOD TREES AND WILLOWS WITH SOME SEDGES AND WETLAND FORBES WITHIN THE DELINEATED AREA. THIS ZONE COLLECTS STORMWATER RUNOFF FROM THE SOUTHERN HILLSIDE OF THE PROPERTY AND SLOWLY DRAINS WATER TO THE WEST INTO THE LARGER WETLAND IN ZONE "E".

ZONE "I"

ZONE "I" IS A LARGE AREA, APPROXIMATELY 7.63 ACRES IN SIZE, AND COMPOSED ALMOST ENTIRELY OF NORWAY SPRUCE TREES RANGING FROM 5-18" AT DBH, SPACED 10-15' APART, AND MAKE UP ROUGHLY 90% OF THE TREE POPULATION. THE REMAINING 10% OF TREE COVER IS COMPOSED OF BLACK CHERRY, BLACK LOCUST, RED OAK, AND AMERICAN ELM, ALL OF WHICH ARE BETWEEN 6-18" AT DBH. THE UNDERSTORY IS ALMOST NON-EXISTENT. THE EASTERN 75% OF THIS ZONE IS COMPOSED OF MIAMI LOAM SOILS WITH SLOPES RANGING FROM 25-35%, AND THE WESTERN 25% IS A FOX-BOYER COMPLEX WITH SLOPES RANGING FROM 12-18%. A PORTION OF VEGETATION IN THIS AREA WILL BE REMOVED FOR THE DRIVEWAY AND/OR SOCCER FIELD.

ZONE "J"

ZONE "J" IS APPROXIMATELY 2.38 ACRES IN SIZE AND IS A SLIGHT TRANSITION FROM THE ZONE "I" CONIFEROUS COMMUNITY TO A MORE DECIDUOUS FOREST STAND. THE DOMINANT SPECIES HERE ARE RED AND WHITE OAK, SHAGBARK AND BITTERNUT HICKORY, BLACK CHERRY, AND AMERICAN ELM. THERE ARE SEVERAL LARGE NORWAY SPRUCE TREES, BUT THEY ARE NO LONGER THE DOMINANT SPECIES. ALL OF THESE TREES ARE MATURE AND ARE 6-18" AT DBH AND SPACED ROUGHLY 10' APART. AN UNDERSTORY OF GREEN ASH, HICKORY, AND HONEYSUCKLE IS PRESENT, THOUGH NOT OVERBEARING. SOILS ARE A FOX-BOYER COMPLEX WITH 18-25% SLOPES THAT DRAIN TO THE LARGE POND IN ZONE "A".

ZONE "K"

ZONE "K" IS APPROXIMATELY 2.85 ACRES IN SIZE AND BORDERS MUCH OF THE SOUTHERN AND WESTERN BOUNDARIES OF THE SITE. THIS FOREST STAND IS ALMOST ENTIRELY DECIDUOUS AND CONTAINS MATURE RED OAKS, BLACK CHERRY, AMERICAN ELM, HICKORY, AND VARIOUS MAPLE TREES RANGING FROM 5-18" AT DBH, THOUGH THERE ARE SEVERAL LANDMARK TREES IN THIS ZONE THAT MUST BE NOTED. THE TREES ARE SPACED ROUGHLY 15' APART. THE SOILS ARE MIAMI LOAMS WITH 18-25% SLOPES THAT SHED WATER TOWARDS THE SOUTHERN BOUNDARIES OF THE SITE.

ZONES "L", "M", "N"

THESE THREE ZONES MAKE UP A LARGER OPEN SPACE, APPROXIMATELY 1.68 ACRES IN SIZE AND IS ALMOST ENTIRELY FREE OF TREE SPECIES. INSTEAD, THE AREA IS POPULATED WITH A DOMINANCE OF GREY DOGWOOD SHRUBS, VARIOUS MEADOW FORBES, GRASSES, AND VINES. THERE ARE A FEW LARGE BUT DEAD ELM TREES AT THE EASTERN EDGE OF ZONE "N", AND SEVERAL NORWAY MAPLE TREES AT THE NORTHERN PORTION OF ZONE "N". THE LAND IS MUCH FLATTER IN THIS AREA WHERE SOILS ARE A FOX-BOYER COMPLEX WITH SLOPES AT 2-6% THAT GENTLY DRAIN TO THE WEST. A PORTION OF VEGETATION IN THIS AREA WILL BE REMOVED FOR THE DRIVEWAY AND/OR PARKING.

ZONES "O" AND "P"

THESE ZONES MAKE UP APPROXIMATELY 1.31 ACRES OF THE SITE AND ARE LARGE STANDS OF DECIDUOUS TREES THAT INCLUDE SHAGBARK AND BITTERNUT HICKORY, AMERICAN ELM, BLACK CHERRY, AND BLACK LOCUST. THE TREES ARE SPACED ROUGHLY 15' APART AND RANGE FROM 4-12" AT DBH, THOUGH THERE ARE SEVERAL LANDMARK TREES IN THIS AREA THAT MUST BE NOTED. THESE ZONES ARE AT ONE OF THE HIGHEST POINTS OF THE SITE WITH WAWASEE LOAMS SLOPING 2-6% TO THE WEST. A PORTION OF VEGETATION IN THIS AREA WILL BE REMOVED FOR PARKING.

ZONE "Q"

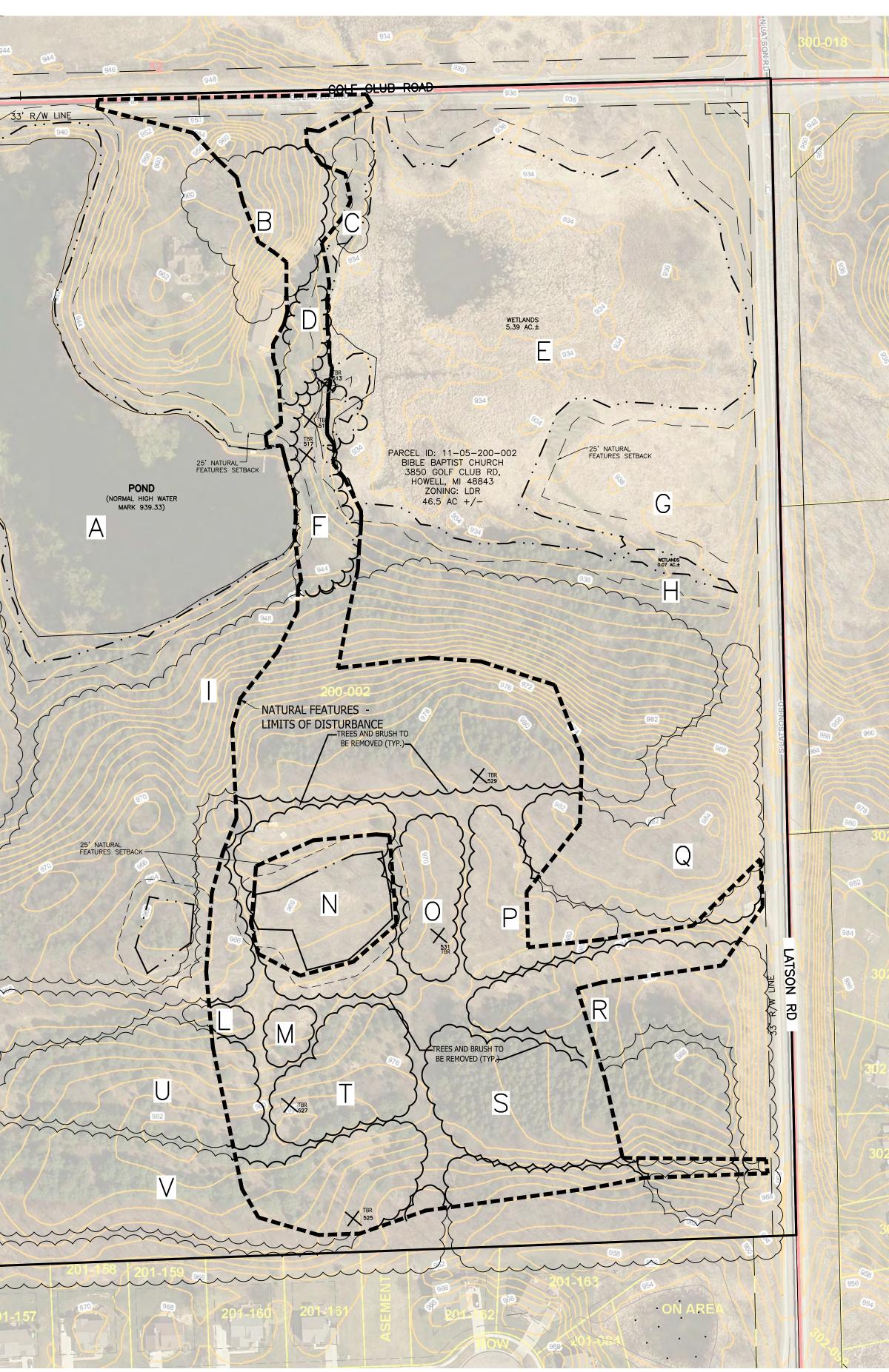
THIS ZONE IS APPROXIMATELY 1.57 ACRES IN SIZE AND HAS A DOMINANCE OF BLACK LOCUST TREES THAT MAKE UP 70% OF THE FOREST STAND. THE REMAINING TREE SPECIES ARE AMERICAN ELM, BLACK CHERRY, AND HICKORY. ALL TREES ARE MATURE RANGING FROM 5-18" AT DBH AND SPACED 15' APART ON AVERAGE. THE EASTERN EDGE OF THIS ZONE IS SLOPING STEEPLY AT 25-35% TO THE EAST TOWARDS LATSON ROAD AND TO THE NORTH TOWARDS ZONE "H". THE WESTERN AND SOUTHERN PORTIONS OF ZONE "Q" ARE RELATIVELY FLAT. THE SOILS ARE A MIX OF WAWASEE LOAMS AND MIAMI LOAMS. **ZONE "R"**

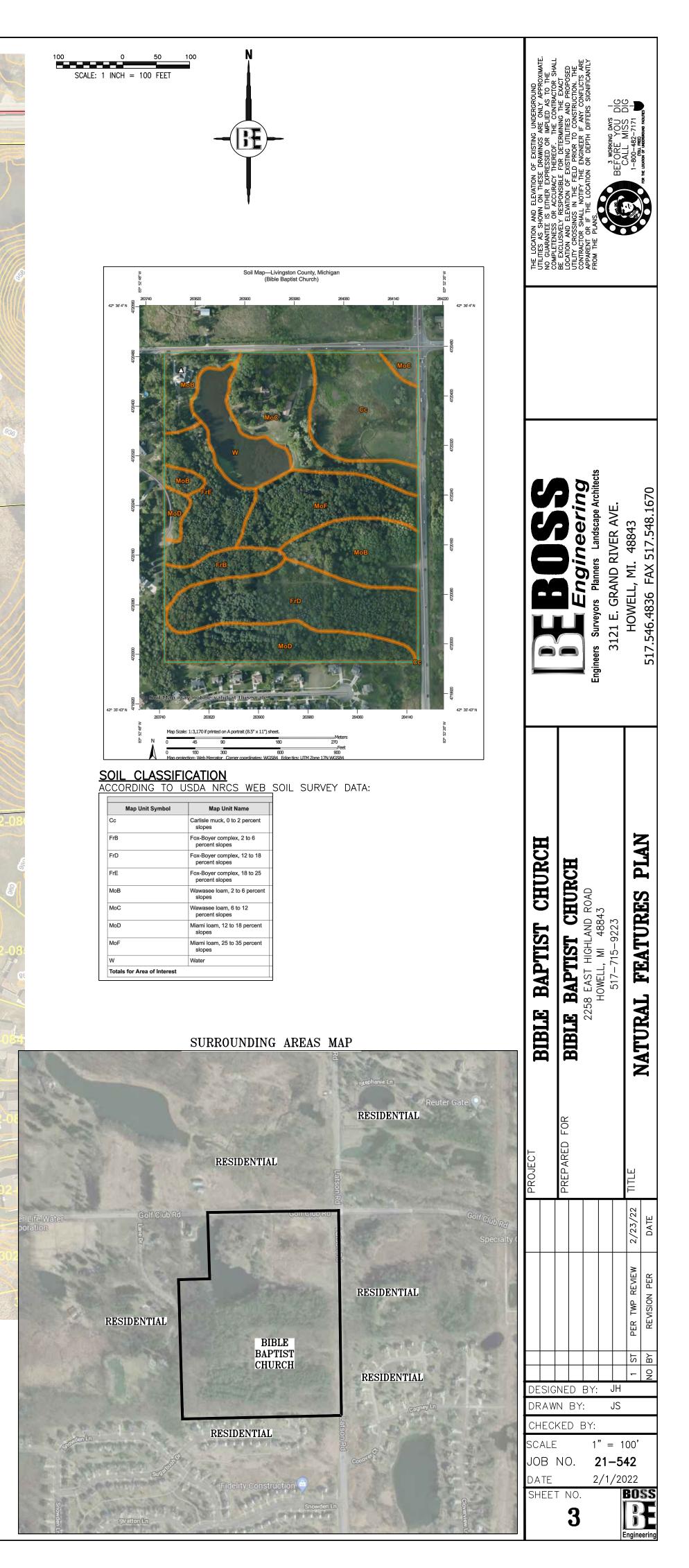
SIMILAR TO ZONE "Q", ZONE "R", WHICH IS APPROXIMATELY 2.60 ACRES IN SIZE, IS DOMINATED BY BLACK LOCUST TREES WHICH MAKE UP 70% OF THE FOREST STAND, WHILE THE REMAINING 30% COVER IS COMPOSED OF AMERICAN ELM, BLACK LOCUST, AND BLACK CHERRY TREES. ALL TREES RANGE FROM 4-18" AT DBH AND AVERAGE ABOUT 10" AT DBH SPACED ROUGHLY 15' APART. THE UNDERSTORY IS MADE UP OF SEVERAL DECIDUOUS SAPLINGS AND SOME HONEYSUCKLE, BUT OTHERWISE OPEN. STEEP SLOPES OF 25-35% RUN EAST TOWARDS LATSON ROAD, WHILE THE SOUTHERN EDGE OF THIS ZONE SLOPES MORE GENTLY TO THE SOUTH AT ROUGHLY 10%. THE SOILS ARE A MIX OF MIAMI LOAM AND WAWASEE LOAM. *A* PORTION OF VEGETATION IN THIS AREA WILL BE REMOVED FOR PARKING.

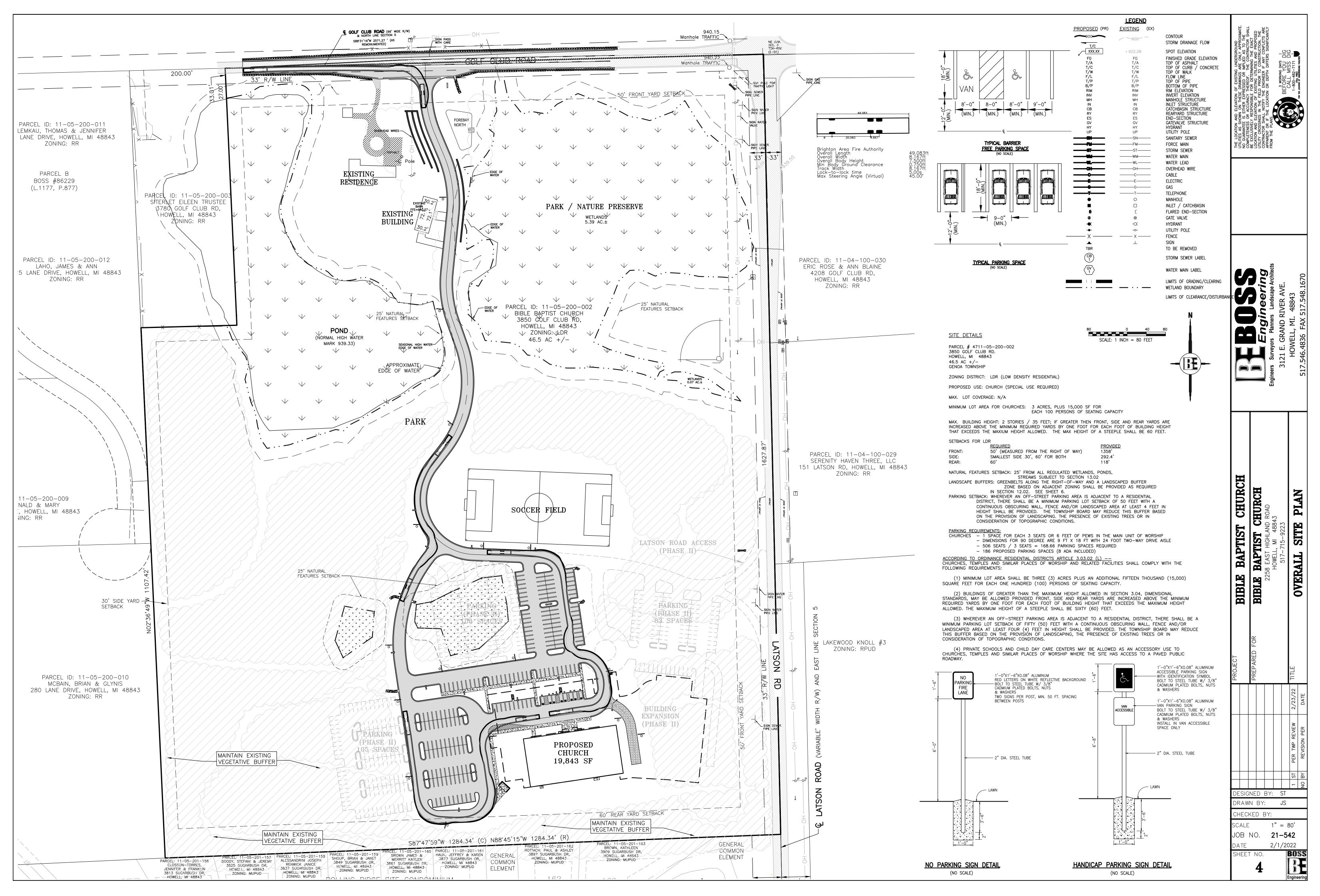
ZONE "S"

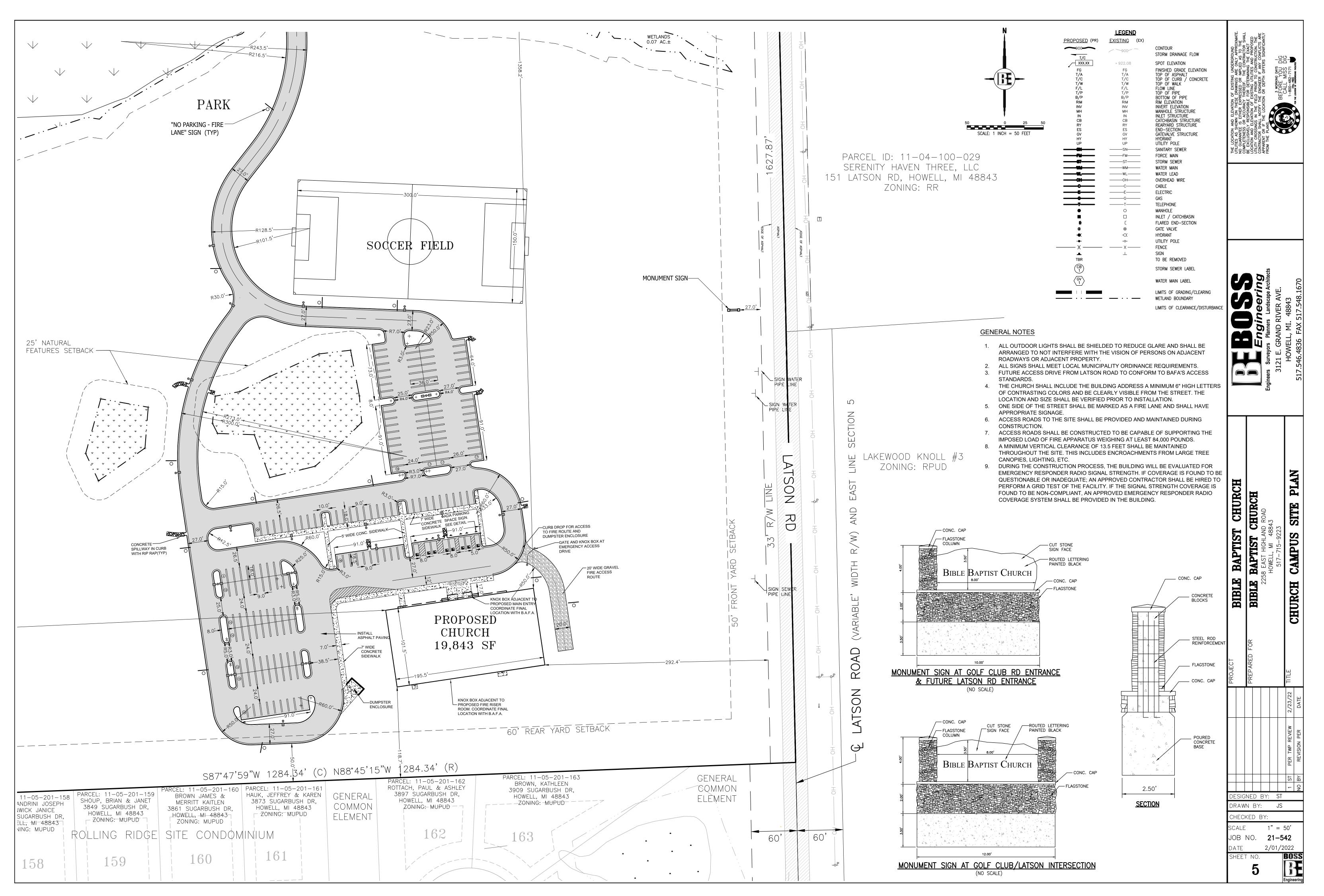
SIZED AT APPROXIMATELY 1.73 ACRES, ZONE "S" IS A LARGE CONIFER STAND COMPOSED MOSTLY OF NORWAY SPRUCE TREES. THE SOUTHERN PORTION OF THIS ZONE IS PLANTED WITH ROWS OF WHITE FIR TREES. ALL TREES IN THIS AREA ARE BETWEEN 4-18" AT DBH AND PLANTED BETWEEN 6-12' APART ON AVERAGE. THE LANDSCAPE SLOPES GENTLY TO THE WEST AT ROUGHLY 2-6%. THE SOILS ARE MOSTLY WAWASEE LOAMS, THOUGH THE SOUTHERN PORTION IS A FOX-BOYER COMPLEX SOIL. A PORTION OF VEGETATION IN THIS AREA WILL BE REMOVED FOR CHURCH BUILDING.

ZONE "T"

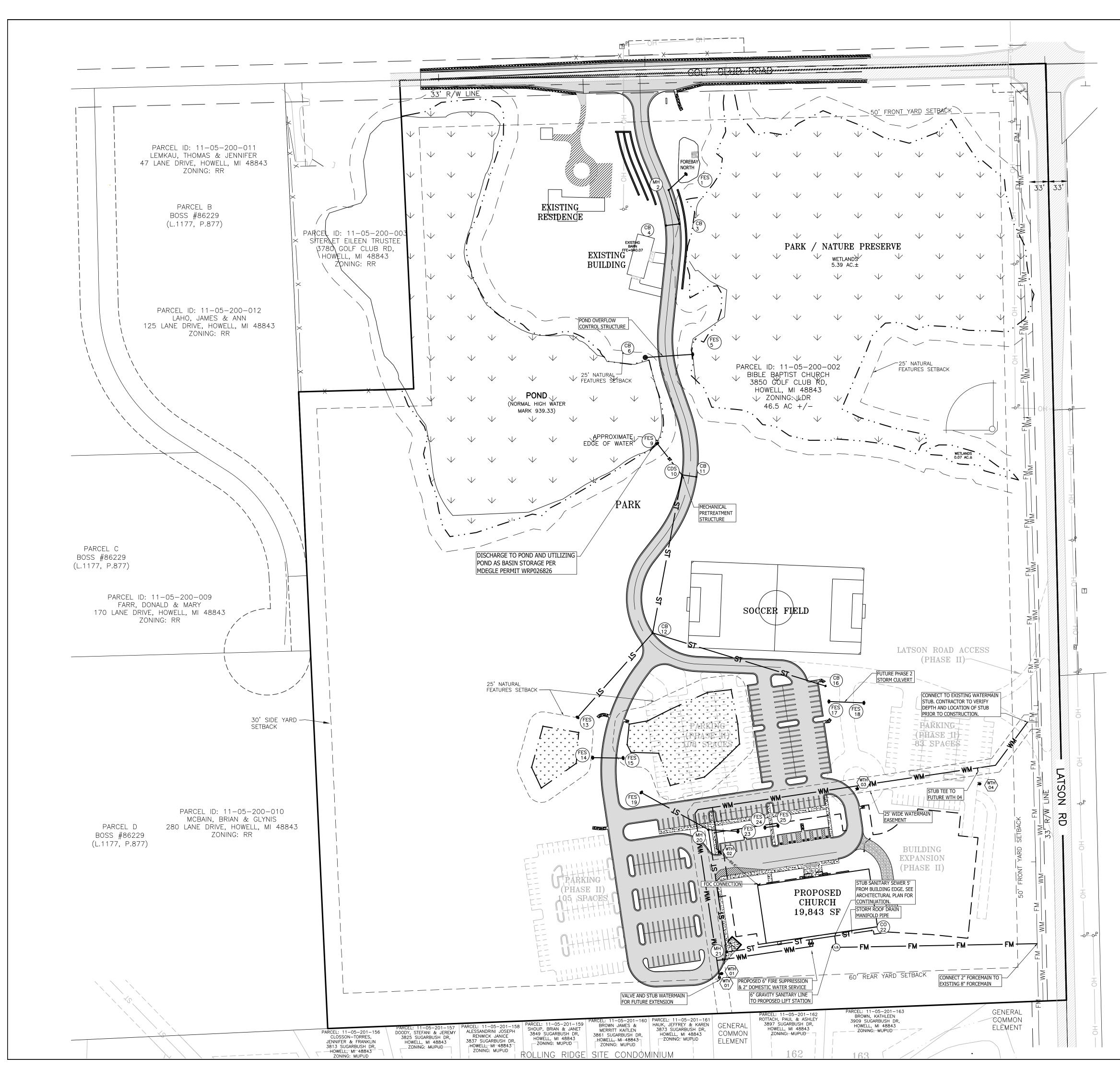

ZONE "T" IS A SMALLER AND MORE OPEN AREA THAT IS APPROXIMATELY 0.64 ACRES IN SIZE. IT IS POPULATED WITH YOUNGER FRASIER FIR AND SCOTCH PINE TREES THAT ARE NOT MUCH LARGER THAN 8" AT DBH. GRASSES AND FORBES OCCUPY THE SPACES IN BETWEEN. THIS ZONE HAS A MIX OF FOX-BOYER COMPLEX SOILS, AND WAWASEE LOAMS THAT SLOPE TO THE NORTHEAST AT ROUGHLY 2-6%. A PORTION OF VEGETATION IN THIS AREA WILL BE REMOVED FOR PARKING AND THE CHURCH BUILDING.

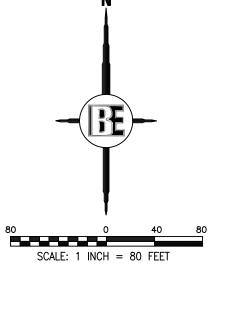

ZONE "U"

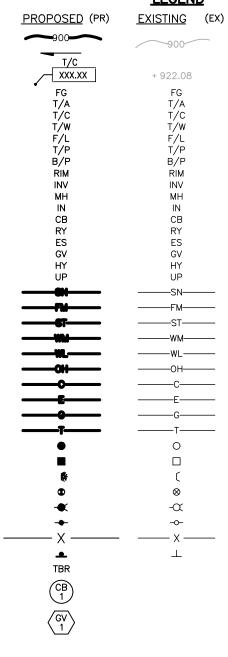

ZONE "U" IS APPROXIMATELY 1.10 ACRES IN SIZE AND POPULATED WITH SCOTCH PINE TREES AND SEVERAL NORWAY SPRUCE TREES THAT RANGE BETWEEN 6-12" AT DBH AND ARE SPACED ABOUT 15' APART. SOILS ARE MIAMI LOAMS AND FOX-BOYER COMPLEX SOILS THAT SLOPE TO THE NORTH AT ABOUT 12%. THE UNDERSTORY IS MINIMAL, THOUGH SOME SMALLER DECIDUOUS SPECIES ARE SPROUTING. A PORTION OF VEGETATION IN THIS AREA WILL BE REMOVED FOR PARKING. ZONE "V"


ZONE "V" IS APPROXIMATELY 2.04 ACRES IN SIZE AND POPULATED WITH WHITE PINE TREES THAT ARE PLANTED IN ROWS ON THE SOUTHERN EDGE, WITH A MIX OF SCOTCH PINE AND WHITE PINE ON THE NORTHERN PORTION. THESE TREES ARE BETWEEN 6-18" AT DBH AND SPACED 15' APART WITH NO UNDERSTORY OBSERVED. THE TREES ARE PLANTED ON A RIDGE WITH MIAMI LOAM SOILS TO THE SOUTH, AND FOX-BOYER COMPLEX SOILS TO THE NORTH WITH SLOPES RANGING FROM 2-6%. A PORTION OF VEGETATION IN THIS AREA WILL BE REMOVED FOR PARKING.

938 940		950 94
200-011		200-003
200.012		044
		J
	932 - / { 932 - / { (7 (7 (7 (7 (7 (7 (7 (7))))))))))	
		K
IN AREA	1-155	201-156 201

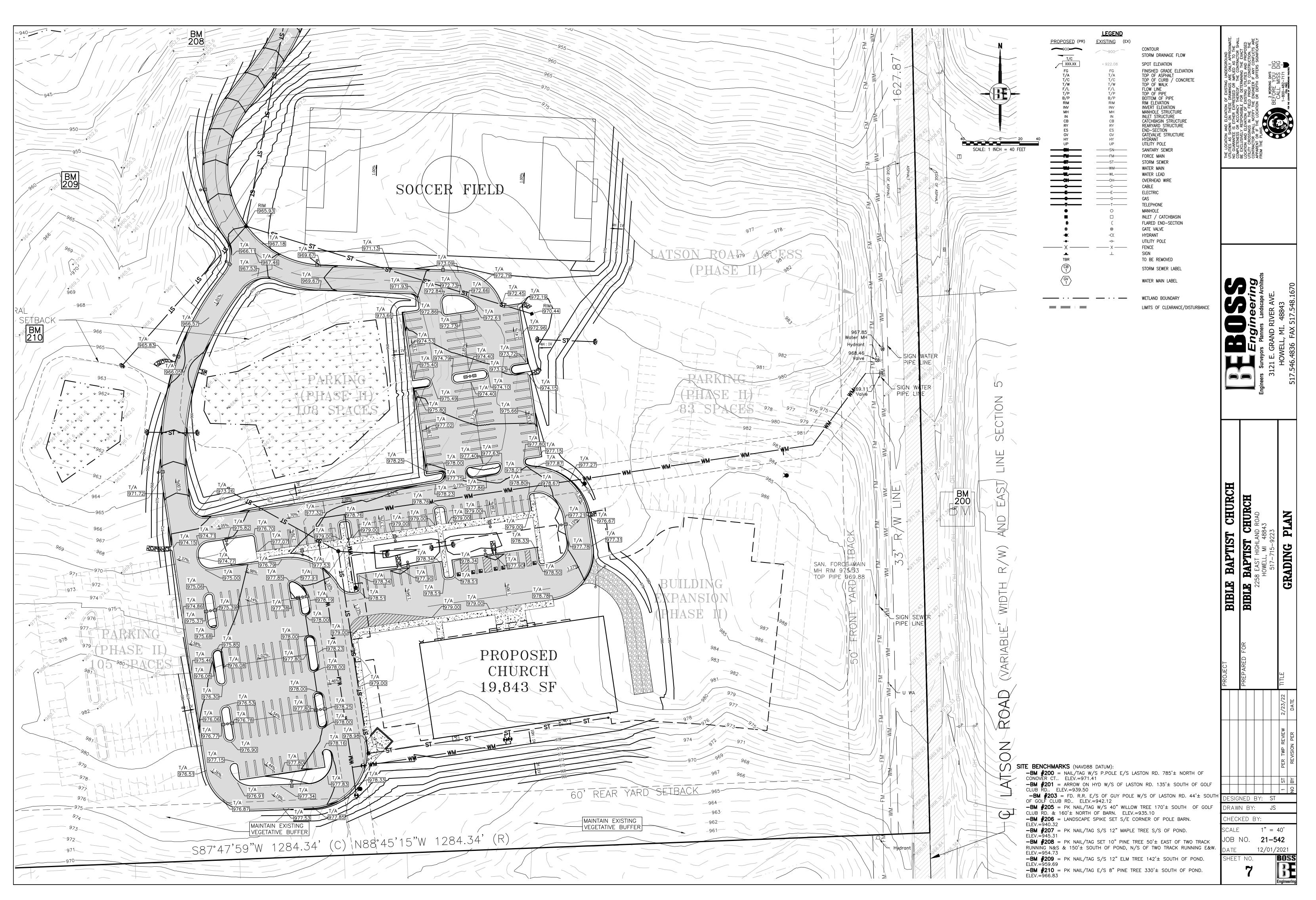


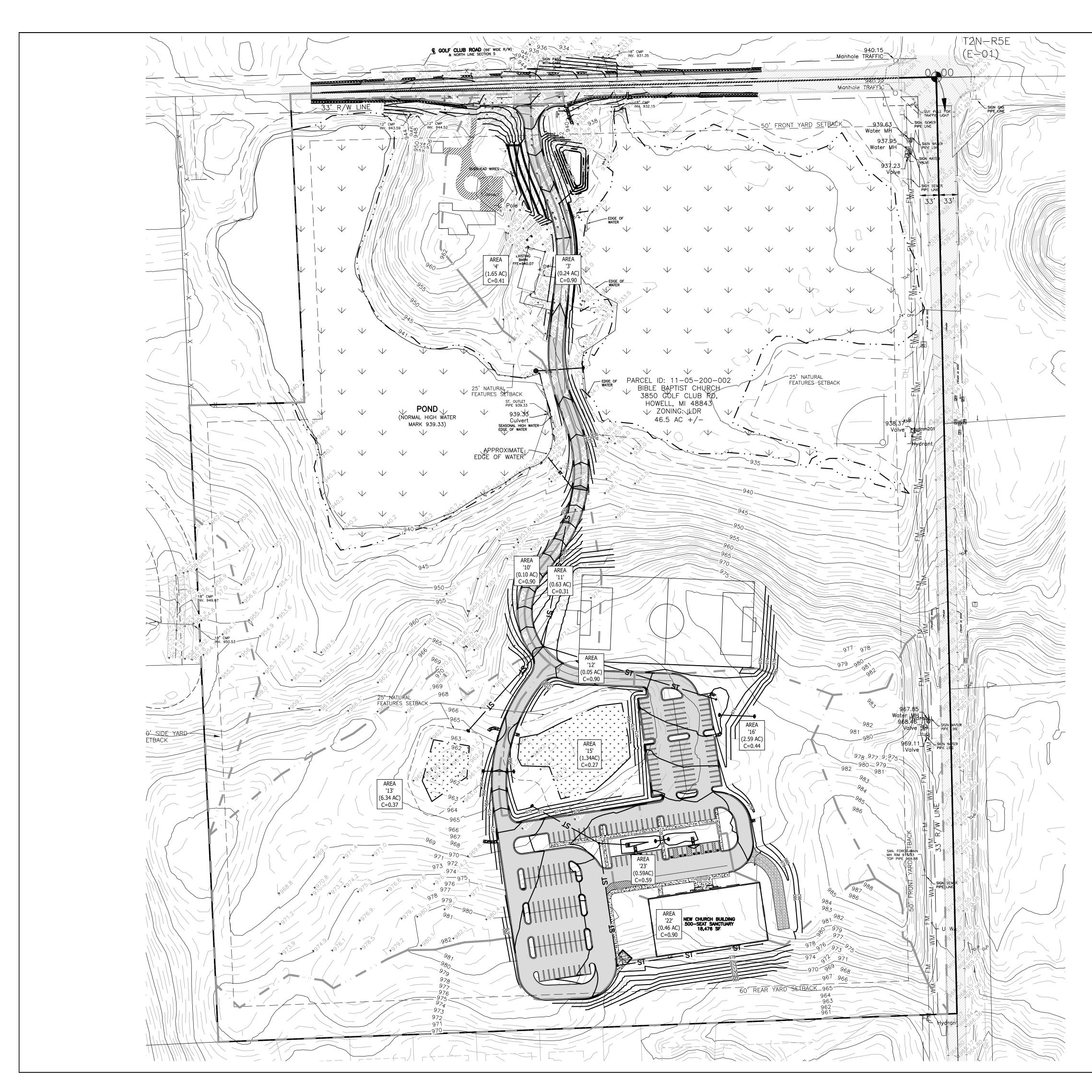




G:\21-542\DWG\SP\21-542 BaseSP.dwg, 2/24/2022 7:56:43 AM, AutoCAD PDF (General Documentation).pc3

<u>LEGEND</u>


___ · · ___ _ _ · · ___


CONTOUR STORM DRAINAGE FLOW SPOT ELEVATION FINISHED GRADE ELEVATION TOP OF ASPHAL TOP OF CURB / CONCRETE TOP OF WALK FLOW LINE TOP OF PIPE BOTTOM OF PIPE RIM ELEVATION INVERT ELEVATION MANHOLE STRUCTURE INLET STRUCTURE CATCHBASIN STRUCTURE REARYARD STRUCTURE END-SECTION GATEVALVE STRUCTURE HYDRANT UTILITY POLE SANITARY SEWER FORCE MAIN STORM SEWER WATER MAIN WATER LEAD OVERHEAD WIRE CABLE ELECTRIC GAS TELEPHONE MANHOLE INLET / CATCHBASIN FLARED END-SECTION GATE VALVE HYDRANT UTILITY POLE FENCE SIGN TO BE REMOVED STORM SEWER LABEL WATER MAIN LABEL WETLAND BOUNDARY

<u>NOTES</u>

- A WATERMAIN PERMIT (ACT 399) SHALL BE OBTAINED PRIOR TO CONSTRUCTION.
 ALL WORK SHALL BE IN ACCORDANCE WITH THE STANDARDS AND SPECIFICATIONS OF GENOA TOWNSHIP, LIVINGSTON COUNTY, AND THE STATE OF MICHIGAN.
- THREE WORKING DAYS BEFORE YOU DIG, CALL MISS DIG TOLL FREE 1-800-482-7171.
 ALL LENGTHS SHOWN ARE FROM € TO € OF STRUCTURE OR FROM € OF STRUCTURE TO DISCHARGE END OF FLARED END
- ALL STORM SEWER UNDER THE ROADBED AND WITHIN GREEN SPACE SHALL BE ADS HP WITH WATERTIGHT PREMIUM JOINTS, UNLESS OTHERWISE NOTED ON PLAN.
 ALL OPEN INLET OR OUTLET END OF STORM SEWER AND CULVERTS SHALL INCLUDE PREFAB FLARED-END SECTION AND
- MINIMUM 15 SQ. YD. OF PLAIN COBBLESTONE RIP-RAP (6 INCH MIN. SIZE), UNLESS OTHERWISE SPECIFIED. APPROPRIATE SOIL EROSION CONTROL MEASURES SHALL BE ESTABLISHED PRIOR TO BEGINNING CONSTRUCTION AND CONTINUOUSLY MAINTAINED BY CONTRACTOR UNTIL VEGETATION HAS BEEN RE-ESTABLISHED. 7
- 8. ALL CATCH BASIN RIM ELEVATIONS ARE AT FLOW LINE. 9. ALL CURB SHALL BE "HIGH BACK" CURB. ENTRANCE SHALL BE "B2" CURB, UNLESS OTHERWISE NOTED.
- 10. FOR ALL WORK WITHIN ROAD RIGHT-OF-WAY, SEE STANDARDS AND SPECIFICATIONS, LIVINGSTON COUNTY ROAD COMMISSION STANDARD DETAILS FOR RESIDENTIAL STREETS. 11. MINIMUM 10' HORIZONTAL SEPARATION AND 18" VERTICAL SEPARATION SHALL BE MAINTAINED BETWEEN UTILITIES AT ALL TIMES. A CONCRETE COLLAR SHALL BE USED WHEREVER THE MINIMUM 18" VERTICAL SEPARATION CANNOT BE MET BETWEEN STORM
- SEWER AND SANITARY MAIN. SEE STORM SEWER CONSTRUCTION DETAIL SHEET FOR CONCRETE COLLAR DETAIL. 12. SEE STANDARDS AND SPECIFICATIONS ON WATER MAIN STANDARD NOTES AND WATER MAIN STANDARD DETAILS SHEETS. 13. WATER MAIN SHALL BE 8" DUCTILE IRON PIPE CLASS 52. 14. WATER MAIN SHALL HAVE MINIMUM 5 1/2 FEET OF COVER AND MAX 8 1/2' COVER.
- 15. HYDRANTS AT CURB TO BE A MINIMUM OF 3' & MAXIMUM 10' OFF BACK OF CURB (TYP.) 16. PER MHOG STANDARDS, GATE VALVES AND BOXES ARE TO BE UTILIZED ON WATERMAIN 12 INCHES AND SMALLER. 17. A FULL PIPE LENGTH (20') IS TO BE INSTALLED AT ALL WATERMAIN PIPE CROSSINGS, CENTERED UNDER THE CONFLICTING PIPE. 18. ALL PIPE THAT IS TO BE INSTALLED ABOVE THE EXISTING GROUND SHALL BE BACKFILLED WITH ENGINEERING FILL COMPACTED TO 95% MAX DRY UNIT WEIGHT.

-8 ≼-**D** S 문 문 문 THE UTILITIE UTILITIE BBE EX CONTR FROM 0 ÷ r CHURCH CHURCH PLAN BAPTIST BAPTIST **ATLLITT** BIBLE ESIGNED BY: ST DRAWN BY: JS CHECKED BY: 1" = 80' SCALE JOB NO. 21-542 2/1/2022 BOSS SHEET NO. R

<u>LEGEND</u>

EXISTING (EX)

+ 922.08

T/A

т́/С T/W

F/L T/P

B/P

RIM

INV

————FM————

_____ST_____

_____WL_____

_____OH_____ _____C____

——Е——

_____G_____

_____T____

-0

-0-

 \perp

_____X _____ × ____

TBR $\binom{CB}{1}$

 $\left< \begin{array}{c} GV \\ 1 \end{array} \right>$

—WM———

<u>PROPOSED</u> (PR)

900

_ T/C XXX.XX

T/A

T/C

T/W

F/L

T/P

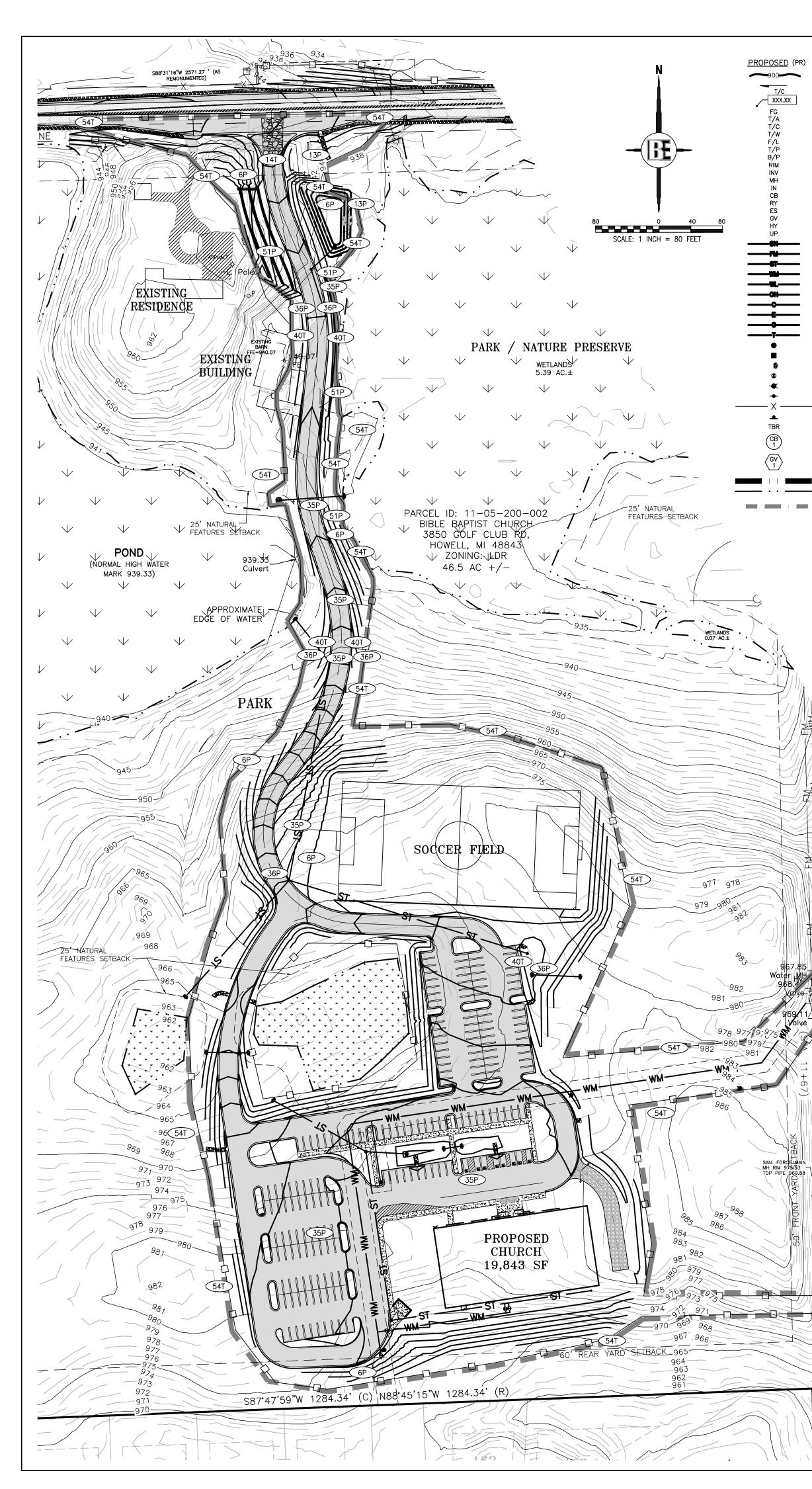
B/P

-(<u>B</u>)--

SCALE: 1 INCH = 80 FEET CONTOUR STORM DRAINAGE FLOW SPOT ELEVATION

FINISHED GRADE ELEVATION TOP OF ASPHALT TOP OF CURB / CONCRETE TOP OF WALK FLOW LINE TOP OF PIPE TOP OF PIPE BOTTOM OF PIPE RIM ELEVATION INVERT ELEVATION MANHOLE STRUCTURE INLET STRUCTURE CATCHBASIN STRUCTURE REARYARD STRUCTURE END-SECTION GATEVALVE STRUCTURE HYDRANT UTILITY POLE SANITARY SEWER FORCE MAIN STORM SEWER WATER MAIN WATER LEAD OVERHEAD WIRE CABLE ELECTRIC GAS TELEPHONE MANHOLE INLET / CATCHBASIN FLARED END-SECTION GATE VALVE HYDRANT UTILITY POLE FENCE SIGN TO BE REMOVED STORM SEWER LABEL WATER MAIN LABEL

WETLAND BOUNDARY PROPOSED DRAINAGE AREA


DRAINAGE NARRATIVE:

PRE-DEVELOPMENT: IN GENERAL, THE SITE SLOPES NORTHERLY TOWARDS AN EXISTING OPEN WATER POND AND WETLAND AT THE NORTH PORTION OF THE PROPERTY. WATER FROM THE OPEN WATER POND DISCHARGES THROUGH AN EXISTING STANDPIPE EASTERLY TO THE EXISTING WETLAND AND THEN RUNS NORTHERLY UNDERNEATH GOLF CLUB ROAD. A SMALL PORTION OF THE PROPERTY SLOPES EASTERLY DIRECTLY TO LATSON ROAD RIGHT OF WAY AS WELL AS SOME AREA SLOPING DIRECTLY SOUTHERLY TO THE EXISTING ROLLING RIDGE SITE CONDO.

POST-DEVELOPMENT: THE OVERALL DRAINAGE PATTERNS ON THE SITE AFTER DEVELOPMENT REMAIN GENERALLY THE SAME. THERE WILL A REDUCTION IN DRAINAGE AREA DIRECTLY DISCHARGING TO THE ROLLING RIDGE SITE CONDO TO THE SOUTH. THE DIRECT DRAINAGE TO LATSON ROAD RIGHT OF WAY WILL REMAIN UNCHANGED. THE PROPOSED CHURCH AND ALL IMPERVIOUS SURFACES WILL BE DIRECTED VIA A COMBINATION OF ENCLOSED STORM SEWER AS WELL AS OPEN SWALES NORTHERLY TO A MECHANICAL PRETREATMENT UNIT. THE MECHANICAL PRETREATMENT UNIT WILL TREAT THE STORMWATER FROM THE FIRST FLUSH PER NEW LCDC STANDARDS AND DISCHARGE TO THE EXISTING POND ON THE NORTHWEST PORTION OF THE PROPERTY. STORAGE IS WITHIN THE OPEN WATER POND PRIOR TO DISCHARGE INTO THE EAST WETLAND, WHICH IS PERMITTED UNDER MDEGLE PERMIT #WRP026826. THERE IS A NORTH FOREBAY WHOSE DRAINAGE AREAS IS LIMITED TO THE NORTHERN PORTION OF THE PROPOSED COMMERCIAL DRIVE. THIS NORTHERN FOREBAY DISCHARGES DIRECTLY TO THE EAST WETLAND AND IS PERMITTED UNDER MDEGLE PERMIT #WRP026826.

FUTURE DEVELOPMENT: THE PLANS FOR A CHURCH EXPANSION ARE ANTICIPATED AT A LATER DATE, WITH A REASONABLE EXPECTED LAYOUT PROVIDED AT THIS TIME FOR THIS FUTURE EXPANSION. SINCE THIS FUTURE EXPANSION IS KNOWN, THE STORM SEWER CALCULATIONS AND FOREBAY/MECHANICAL PRETREATMENT UNITS HAVE BEEN SIZED ACCORDINGLY TO ACCOUNT FOR FUTURE CHURCH DEVELOPMENT, THUS MITIGATING UNNECESSARY DISTURBANCE DURING THE EXPANSION PROJECT. AS WAS THE CASE IN THE POST-DEVELOPED CONDITION, THE DRAINAGE AREA DISCHARGING DIRECTLY TO THE ROLLING RIDGE SITE CONDO TO THE SOUTH WILL BE REDUCED YET AGAIN IN THE FUTURE CONDITION. THE DRAINAGE TO THE LATSON ROAD RIGHT OF WAY WILL NEED TO BE APPROVED BY LCRC.

THE LOCATION AND ELEVATION OF EXISTING UNDERGROUND UTILITIES AS SHOWN ON THESE DRAWINGS ARE ONLY APPROXIMATE. NO GURANTEE IS EITHER EXPRESSED OR IMPLIED AS TO THE COMPLETENESS OR ACCURACY THEREOF. THE CONTRACTOR SHALL	BE EXCLUSIVELY RESPONSIBLE FOR DETERMINING THE EXACT LOCATION AND ELEVATION OF EXISTING UTILITIES AND PROPOSED UTILITY CROSSINGS IN THE FIELD PRIOR TO CONSTRUCTION. THE CONTRACTOR SHALL NOTIFY THE ENGINEER IF ANY CONFLICTS ARE	APPARENT OR IF THE LOCATION OR DEPTH DIFFERS SIGNIFICANTLY FROM THE PLANS.	3 WORKING DAYS	BEFORE YOU DIG	- CALL MI33 DIG - 800-482-7171 - 1-800-7171 - 1-7171 -	For the Location of Understanding Participation
	Fraineering	Engineers Survevors Planners Landscape Architects		3121 E. GKAINU KIVEK AVE.	HOWELL, MI. 48843	517.546.4836 FAX 517.548.1670
BIBLE BAPTIST CHURCH	BIBLE BAPTIST CHURCH	2258 EAST HIGHLAND ROAD	HUWELL, MI 40040 511 Jir 0001	C776-C1/-/IC	DATNACE DI AN	UNALIVAGE FLAIN
PROJECT	PREPARED FOR				2 TITLE	
					EVIEW 2/23/22 TITLE	DATE
					ST PER TWP REVIEW	BY REVISION PER
DESIG	NED	BY:		ST	- S	NO NO
DRAW CHEC				JS		
SCALE JOB I date	NO.	_	21-	-	42	
DATE SHEET	- NO. 8	2	/1,	, 2(ss E

<u>LEGEND</u> EXISTING (EX) ~900~

+ 922.08

B/P

RIM

------WL-------

_____OH_____ _____C____

——Е———

____T____

-0X

_____X _____

_____G_____

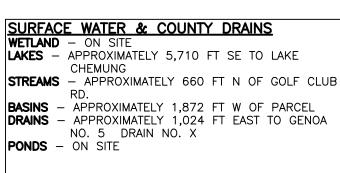
_____ST_____

—WM——

CONTOUR

STORM DRAINAGE FLOW

SPOT ELEVATION FINISHED GRADE ELEVATION TOP OF ASPHALT OP OF CURB / CONCRETE FOP OF WALK FLOW LINE TOP OF PIPE BOTTOM OF PIPE RIM ELEVATION INVERT FLEVATION MANHOLE STRUCTURE INLET STRUCTURE CATCHBASIN STRUCTURE REARYARD STRUCTURE END-SECTION GATEVALVE STRUCTURE HYDRAN UTILITY POLE SANITARY SEWER FORCE MAIN STORM SEWER WATER MAIN WATER LEAD OVERHEAD WIRE CABLE ELECTRIC GAS TELEPHONE MANHOLE INLET / CATCHBASIN FLARED END-SECTION GATE VALVE HYDRANT UTILITY POLE FENCE

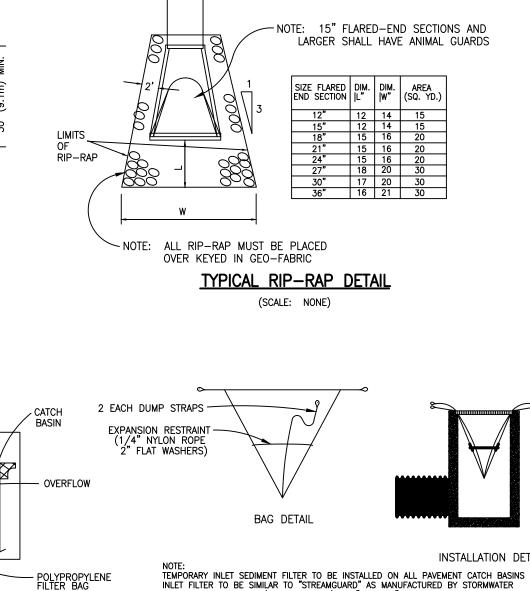

SIGN TO BE REMOVED STORM SEWER LABEL

WATER MAIN LABEL LIMITS OF GRADING/CLEARING WETLAND BOUNDARY LIMITS OF CLEARANCE/DISTURBANCE

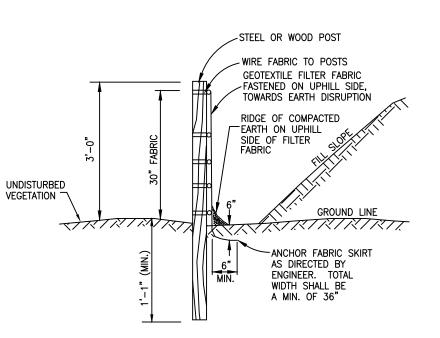
SOIL EROSION CONTROL MEASURES

1		TOPSOIL MAY BE STOCKPILED ABOVE BORROW AREAS TO ACT AS A DIVERSION STOCKPILE SHOULD BE TEMPORARILY SEEDED
6	SEEDING WITH MULCH AND/OR MATTING	Facilitates establishment of vegetative cover Effective for drainageways with Low Velocity Easily placed in small quantities by inexperienced personnel Should include prepared topsoil bed
13	RIP-RAP, RUBBLE, GABIONS	USED WHERE VEGETATION IS NOT EASILY ESTABLISHED EFFECTIVE FOR HIGH VELOCITIES OR HIGH CONCENTRATIONS PERMITS RUNOFF TO INFILITRATE SOIL DISSIPATES ENERGY FLOW AT SYSTEM OUTLETS
14	AGGREGATE COVER	STABILIZES SOIL SURFACE, THUS MINIMIZING EROSION PERMITS CONSTRUCTION TRAFFIC IN ADVERSE WEATHER WAY BE USED AS PART OF PERMANENT BASE CONSTRUCTION OF PAVED AREAS
34	SEDIMENT BASIN	TRAPS SEDIMENT RELEASES RUNOFF AT NON-EROSIVE RATES CONTROLS RUNOFF AT SYSTEM OUTLETS CAN BE VISUAL AMENITIES
35	C.B. STORM SEWER C.B.	SYSTEM REMOVES COLLECTED RUNOFF FROM SITE, PARTICULARLY FROM PAVED AREAS CAN ACCEPT LARGE CONCENTRATIONS OF RUNOFF CONDUCTS RUNOFF TO MUNICIPAL SEWER SYSTEM OR STABILIZED OUTFALL LOCATION USE CATCH BASINS TO COLLECT SEDIMENT
36	CATCH BASIN, DRAIN INLET	COLLECTS HIGH VELOCITY CONCENTRATED RUNOFF MAY USE FILTER CLOTH OVER INLET
40	INLET SEDIMENT FILTER	EASY TO SHAPE COLLECTS SEDIMENT MAY BE CLEANED AND EXPANDED AS NEEDED
51		REDUCES GRADIENT WHERE SLOPES ARE EXTREMELY STEEP PERMITS RETENTION OF EXISTING VEGETATION, KEEPING SOIL STABLE IN CRITICAL AREAS MINIMIZES MAINTENANCE
54	SILT FENCE	USES GEOTEXTILE FABRIC AND POST OR POLES. EASY TO CONSTRUCT AND LOCATE . AS NECESSARY. (SEE DETAIL THIS SHEET)
T=TEMI	PORARY, P=PERMANE	INT

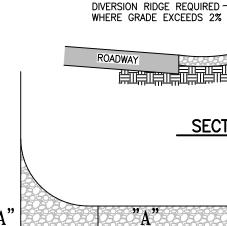
TOTAL DISTURBED AREA = 11.65 AC



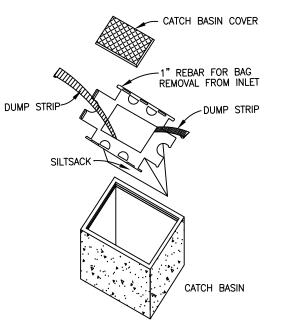
CONSTRUCTION SEQUENCE THE CONTRACTOR IS RESPONSIBLE FOR ENSURING THAT EROSION IS MINIMIZED AND THAT COMPLIANCE WITH ALL APPLICABLE FEDERAL, STATE AND LOCAL LAWS, REGULATIONS, AND ORDINANCES IS MAINTAINED THROUGHOUT EXECUTION OF THIS DAY INSTALL SILT FENCE AS SHOWN ON PLANS. 30 DAYS ROUGH GRADE AND INSTALL STORM DRAINAGE. INSTALL INLET PROTECTION ON STORM INLETS. DAY 4 DAYS INSTALL PAVEMENT EINE CRADE SPREAD TOPSOIL SEED OR SOD AS APPLICABLE.


DAY DAY DAY	7. 8.	REMOVE ALL EROSION CONTROL STRUCTURES. REMOVE ACCUMULATED SILT FROM ALL EXISTIN

CONTROLS & MEASURES POST CONSTRUCTION SEQUENCE										
ACTIVITY	WEEKLY	MONTHLY	AS R							
MAINTAIN LANDSCAPING, REPLACE MULCH	х	Х								
CLEAN INLETS		Х								
COLLECT LITTER	X									
SWEEP PARKING LOT		Х								

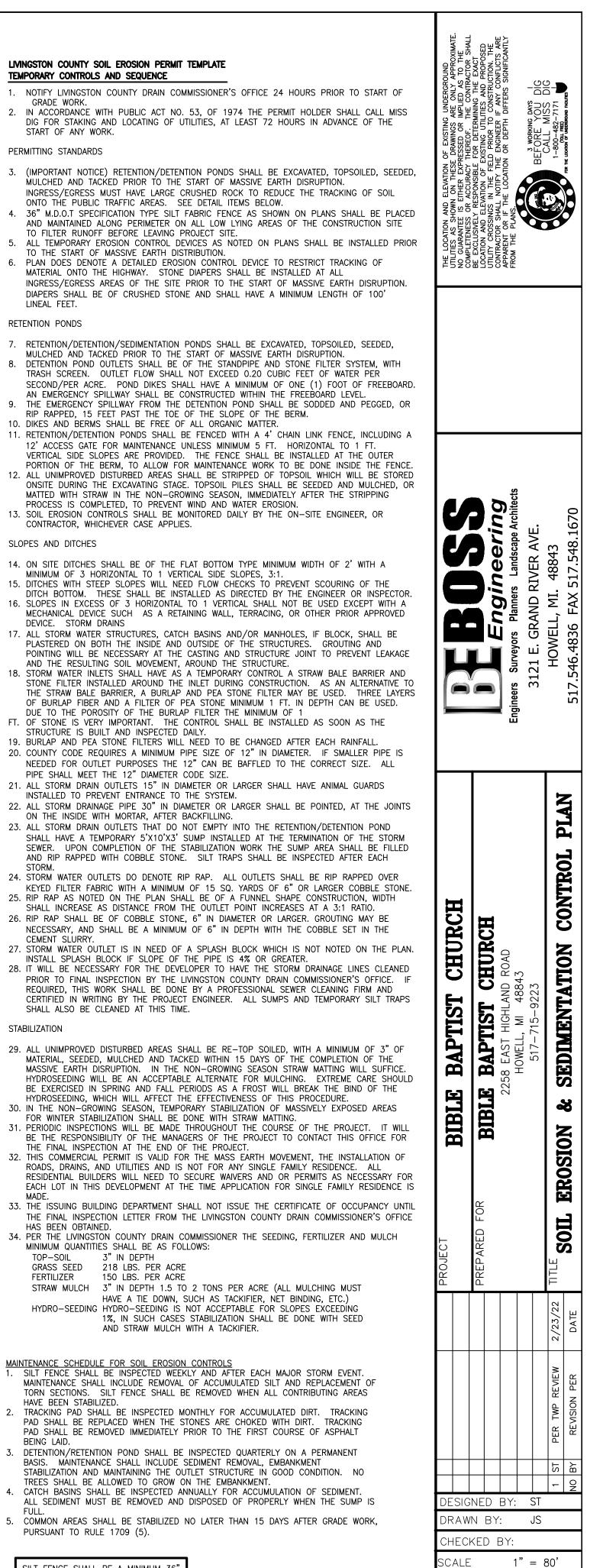

-	
CONTROLS &	MEASURES NARRATIVI
ACTIVITY	DESCRIPTION
MAINTAIN LANDSCAPING, REPLACE MULCH	COLLECT GRASS, TREE, AND CLIPPINGS. DISPOSE IN APP CONTAINER. REPLACE DEAD TREES AND SHRUBS.
CLEAN INLETS	REMOVE LITTER, SEDIMENT, DEBRIS. DISPOSE OF IN APPLANDFILL.
COLLECT LITTER	DISPOSE OF WITH INLET DE
SWEEP PARKING LOT	REMOVE MUD, DIRT, GREASE OIL WITH PERIODIC SWEEPIN
DUST CONTROL	SPRINKLE WATER AS NEEDEI

NUIE: TEMPORARY INLET SEDIMENT FILTER TO BE INSTALLED ON ALL PAVEMENT CATCH BASINS INLET FILTER TO BE SIMILAR TO "STREAMGUARD" AS MANUFACTURED BY STORMWATER SERVICES CORPORATION (206-767-0441) OR "SILTSACK" AS MANUFACTURED BY ATLANTIC CONSTRUCTION FABRICS IN (800-448-3636). CLEAN FILTER AS NEEDED.


SILT FENCE DETAIL NO SCALE

2"-3" (50-75mm) COURSE -AGGREGATE, MIN. 6" (150mm) THICK DIVERSION RIDGE 100' (30m) MIN.

SECTION "A"-"A"


CONSTRUCTION ENTRANCE/EXIT NO SCALE

TEMPORARY GRAVEL

POLYPROPYLENE INLET SEDIMENT FILTER TEMPORARY

NO SCALE

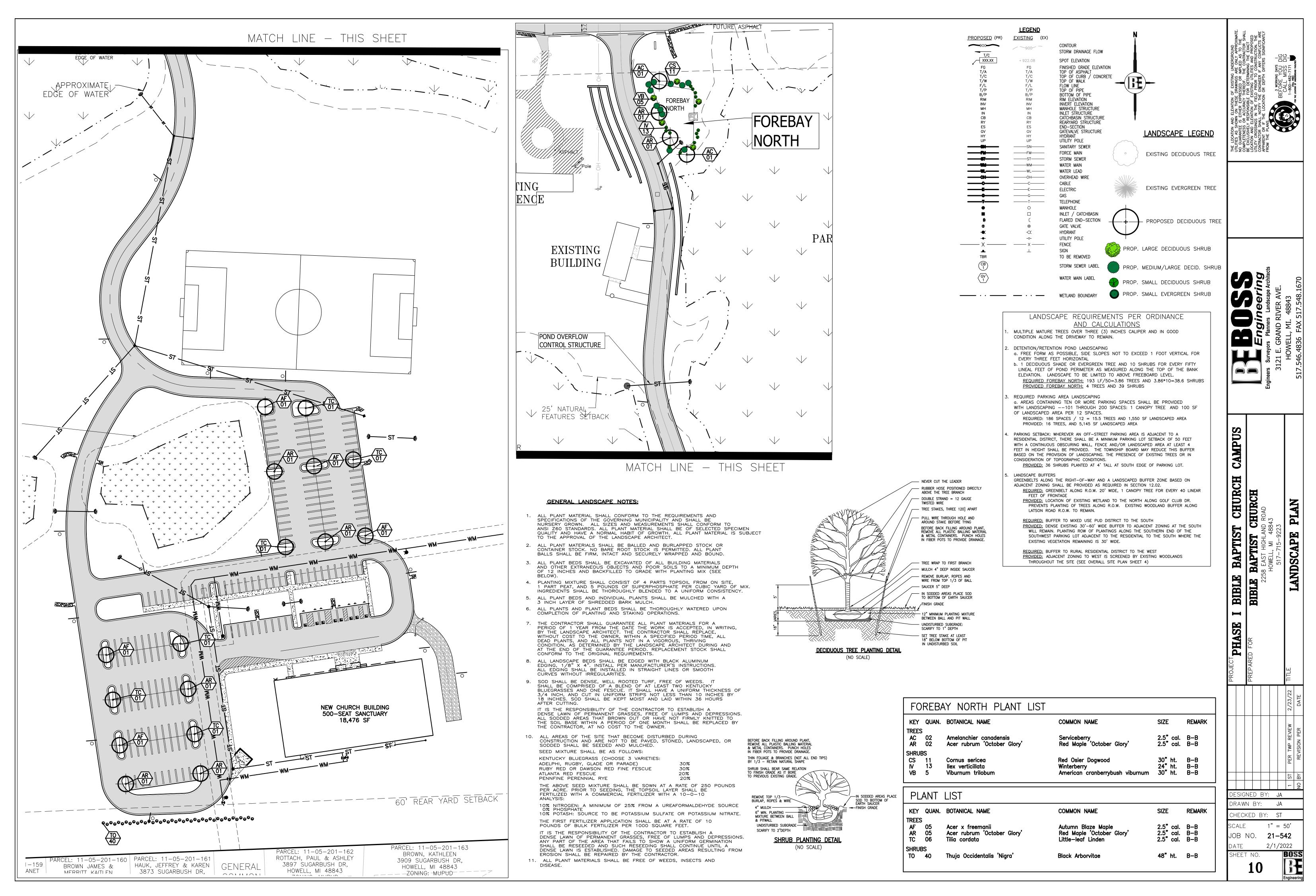
JOB NO.

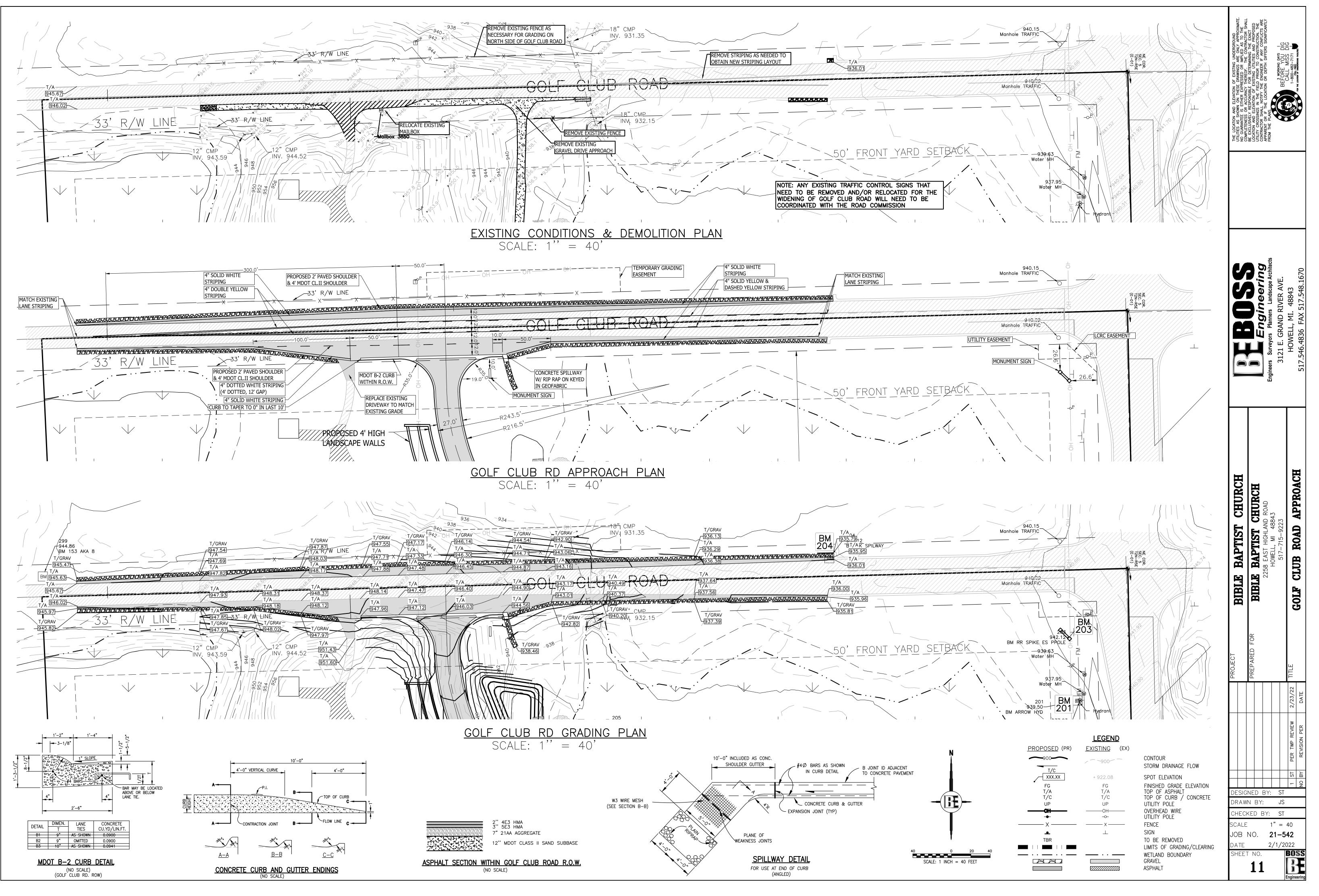
ΗΕΕΤ ΝΟ

21-542

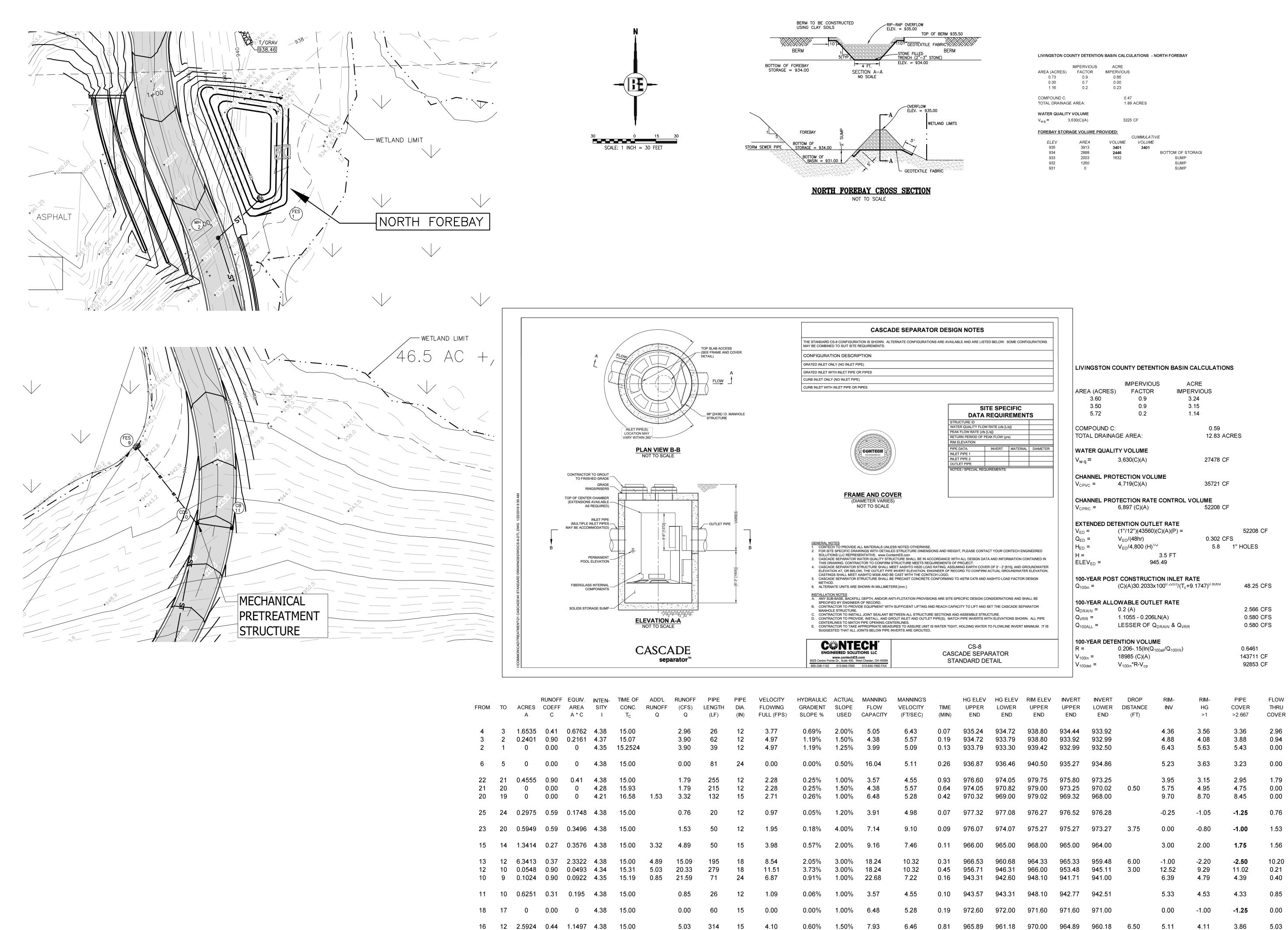
2/1/2022

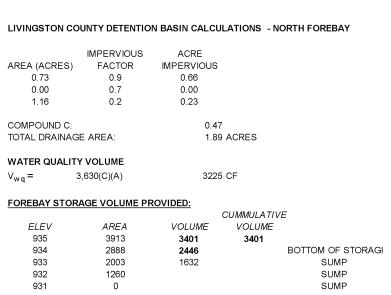
D)C

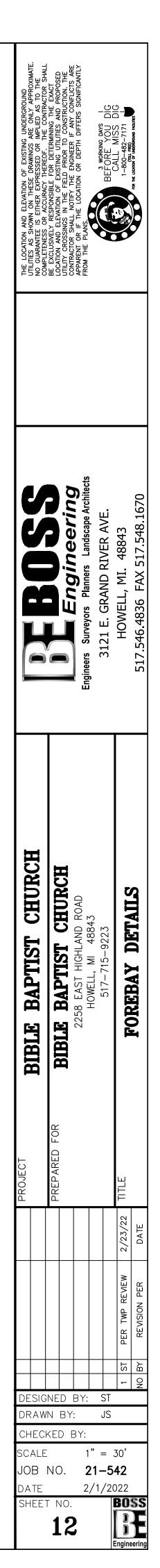

SILT FENCE SHALL BE A MINIMUM 36

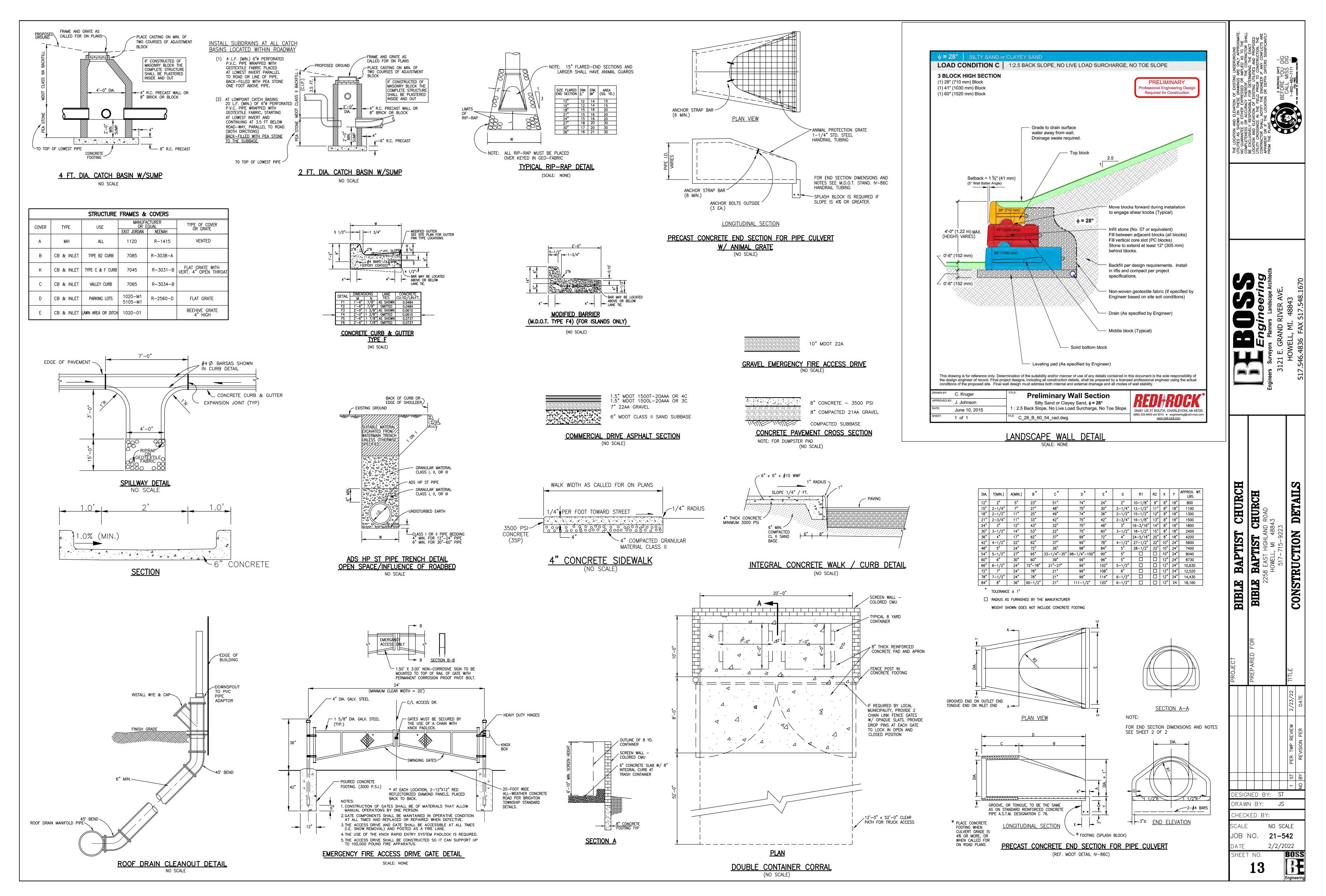

NG DRAINAGE.

EQUIRED
х
Х
Х
Х

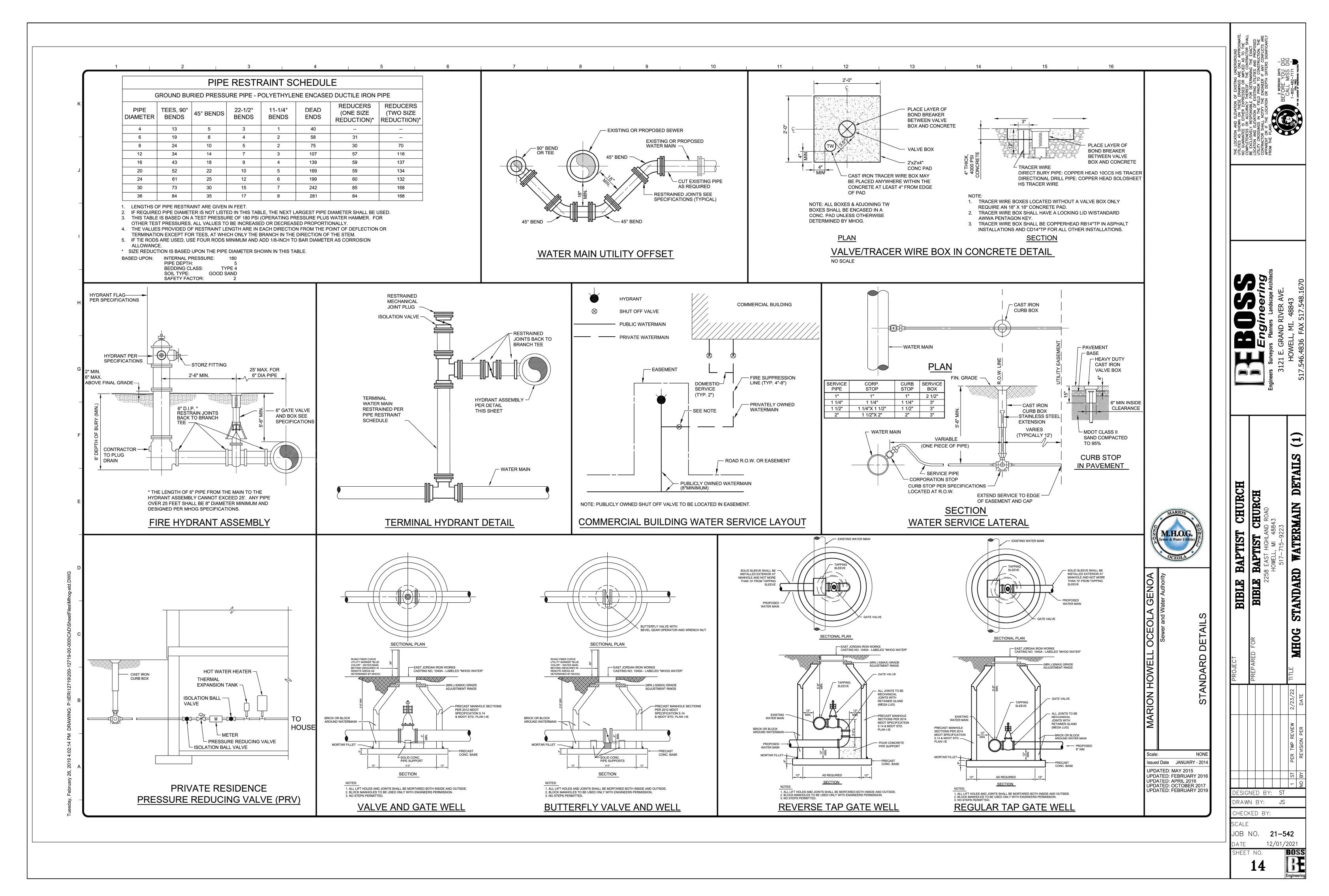

Ξ
SHRUB ROVED SOD,
AND PROVED
BRIS.
C AND

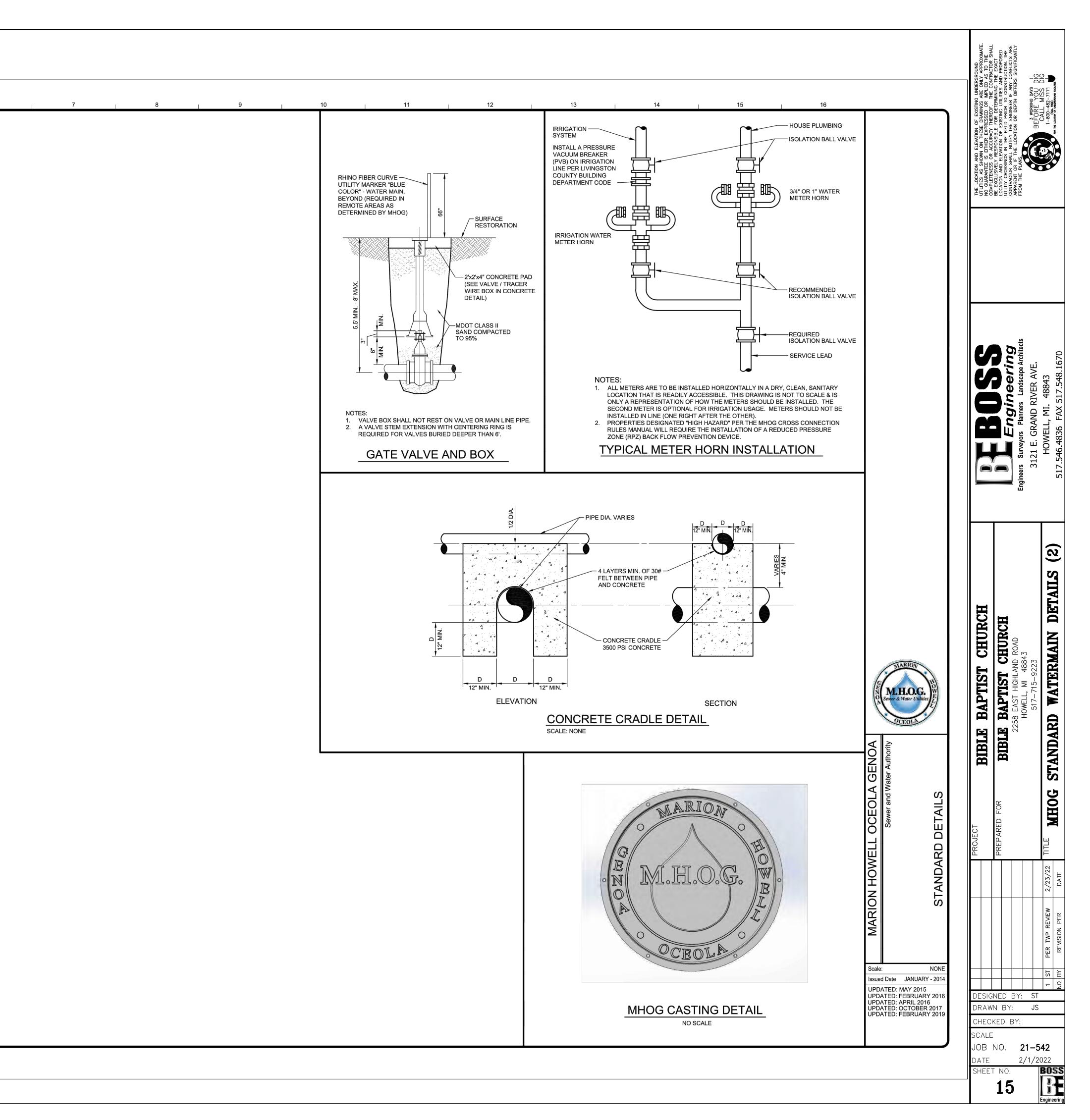

INSTALLATION DETAIL

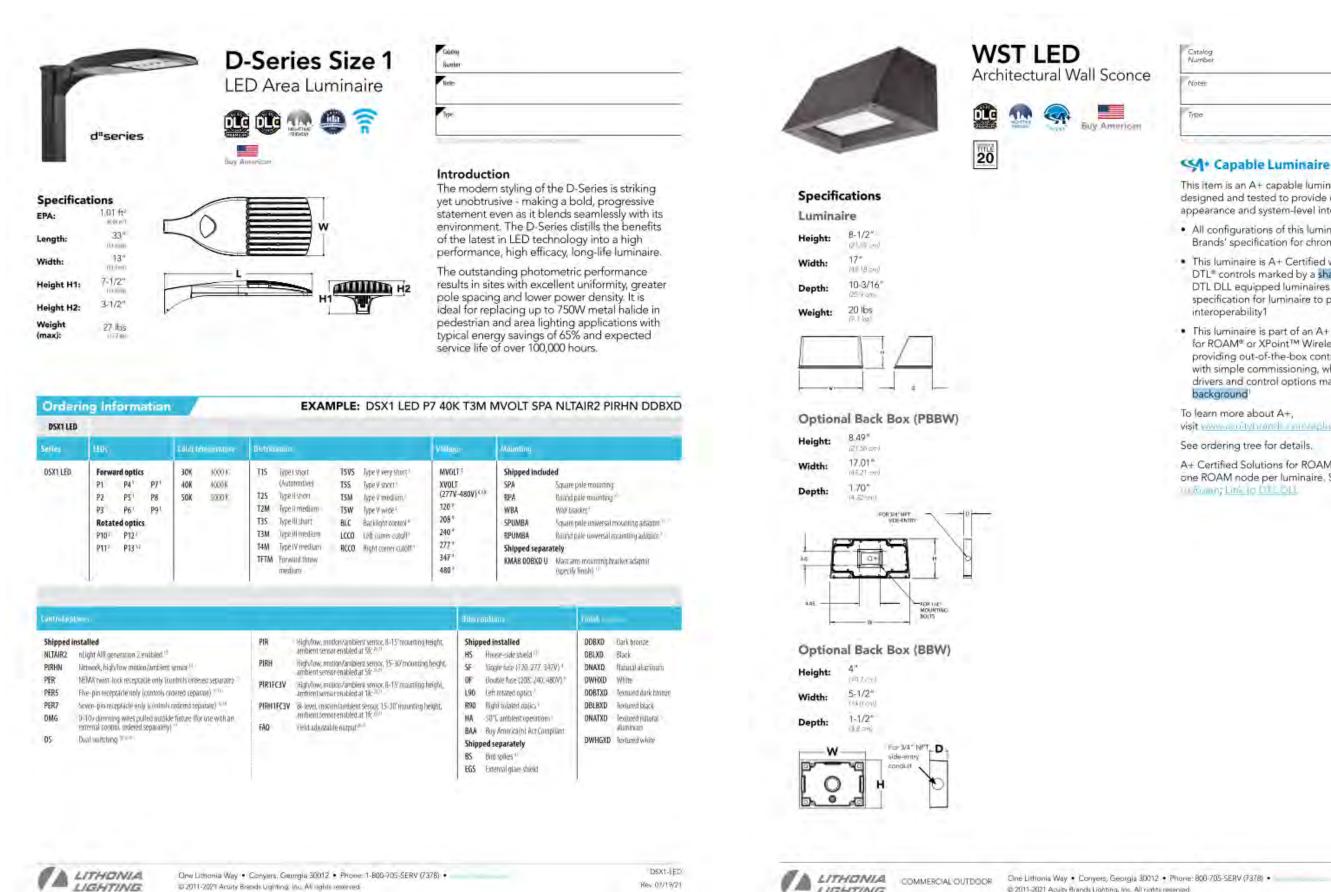




G:\21-542\DWG\SP\21-542 BaseSP.dwg, 2/24/2022 7:57:25 AM, AutoCAD PDF (General Documentation).pc3







G:\21-542\DWG\SP\21-542 BaseSP.dwg, 2/24/2022 7:57:43 AM, AutoCAD PDF (General Documentation).pc3

\bigcap	1	I	2	I	3	I	4	1	5	I
к										
_										
J										
-										
I.										
_										
н										
_										
G										
-										
F										
Е										
_										
D DMC										
atFiles\Mhog-std 										
0-000\CAD\Shee										
19\200-12719-0										
VING: P:\IER\127 B										
3:59 AM DRAW										
Friday, February 8, 2019 9:13:59 AM DRAWING: P:\IER\12719\200-12719-00-000\CAD\SheetFiles\Mhog-std.DWG										
Friday, Febru										

Rev. 07/19/21

Page 1 of 8

LIGHTING

- F A	LITHONIA
COMMERC	HOOTDOOH

© 2011-2021 Acuity Brands Ughting, Inc. All rights reserved

Schedule											
Symbol	Label	Quantity	Manufacturer	Catalog Number	Description	Lamp	Lumens Per Lamp	Light Loss Factor	Wattage		
	Α	5	Lithonia Lighting	DSX1 LED P4 40K T5W MVOLT	DSX1 LED P4 40K T5W MVOLT	LED	14943	0.9	250		
	В	8	Lithonia Lighting	DSX1 LED P4 40K T2M MVOLT	DSX1 LED P4 40K T2M MVOLT	LED	14457	0.9	125		
	С	6	Lithonia Lighting	DSX1 LED P4 40K TFTM MVOLT	DSX1 LED P4 40K TFTM MVOLT	LED	14487	0.9	125		
	D	2	Lithonia Lighting	WST LED P2 40K VW MVOLT	WST LED P2 40K VW MVOLT	LED	3511	0.9	25		

Statistics											
Description	Symbol	Avg	Max	Min	Avg/Min	Max/Min					
Grade @ 0'	+	0.4 fc	7.3 fc	0.0 fc	N/A	N/A					
North Parking and Drives	Ж	1.7 fc	4.9 fc	0.3 fc	5.7:1	16.3:1					
Property Line	+	0.0 fc	0.0 fc	0.0 fc	N/A	N/A					
South Parking	*	2.1 fc	5.3 fc	0.5 fc	4.2:1	10.6:1					

General Note

SEE DRAWING FOR LUMINAIRE MOUNTING HEIGHT.

2. CALCULATIONS ARE SHOWN IN FOOTCANDLES AT: 0' - 0"

3. LIGHTING ALTERNATES REQUIRE NEW PHOTOMETRIC CALCULATION AND RESUBMISSION TO CITY FOR APPROVAL.

THE ENGINEER AND/OR ARCHITECT MUST DETERMINE APPLICABILITY OF THE LAYOUT TO EXISTING / FUTURE FIELD CONDITIONS. THIS LIGHTING LAYOUT REPRESENTS ILLUMINATION LEVELS CALCULATED FROM LABORATORY DATA TAKEN UNDER CONTROLLED CONDITIONS IN ACCORDANCE WITH ILLUMINATING ENGINEERING SOCIETY APPROVED METHODS. ACTUAL PERFORMANCE OF ANY MANUFACTURER'S LUMINAIRE MAY VARY DUE TO VARIATION IN ELECTRICAL VOLTAGE, TOLERANCE IN LAMPS, AND OTHER VARIABLE FIELD CONDITIONS. MOUNTING HEIGHTS INDICATED ARE FROM GRADE AND/OR FLOOR UP.

THESE LIGHTING CALCULATIONS ARE NOT A SUBSTITUTE FOR INDEPENDENT ENGINEERING ANALYSIS OF LIGHTING SYSTEM SUITABILITY AND SAFETY. THE ENGINEER AND/OR ARCHITECT IS RESPONSIBLE TO REVIEW FOR MICHIGAN ENERGY CODE AND LIGHTING QUALITY COMPLIANCE.

UNLESS EXEMPT, PROJECT MUST COMPLY WITH LIGHTING CONTROLS REQUIRMENTS DEFINED IN ASHRAE 90.1 2013. FOR SPECIFIC INFORMATION CONTACT GBA CONTROLS GROUP AT ASG@GASSERBUSH.COM OR 734-266-6705.

FOR ORDERING INQUIRIES CONTACT GASSER BUSH AT QUOTES@GASSERBUSH.COM OR 734-266-6705.

THIS DRAWING WAS GENERATED FROM AN ELECTRONIC IMAGE FOR ESTIMATION PURPOSE ONLY. LAYOUT TO BE VERIFIED IN FIELD BY OTHERS.

MOUNTING HEIGHT IS MEASURED FROM GRADE TO FACE OF FIXTURE. POLE HEIGHT SHOULD BE CALCULATED AS THE MOUNTING HEIGHT LESS BASE HEIGHT.

PARCEL ID: 11-05-200-009 FARR, DONALD & MARY 170 LANE DRIVE, HOWELL, MI 48843

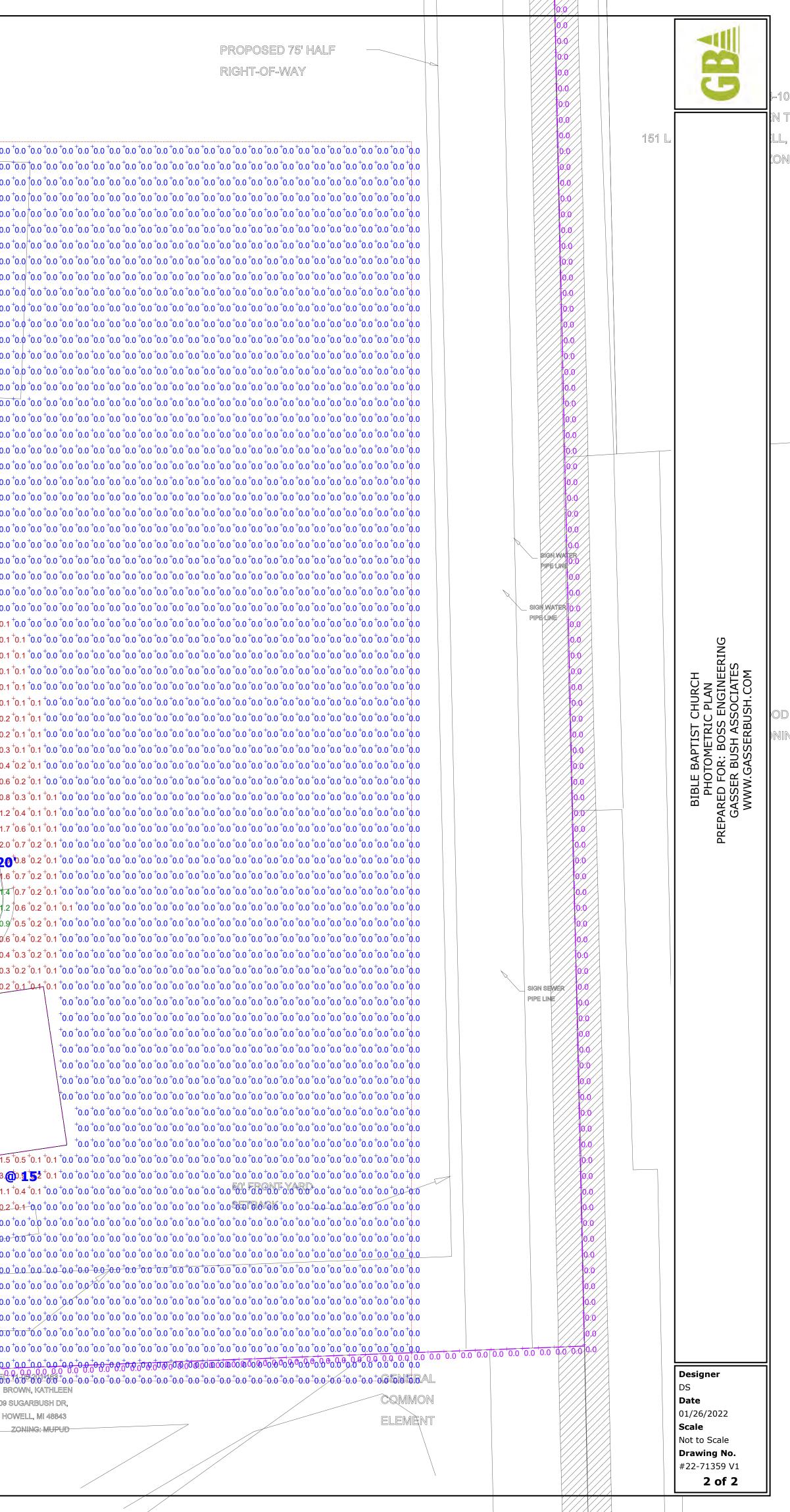
ZONING: RR

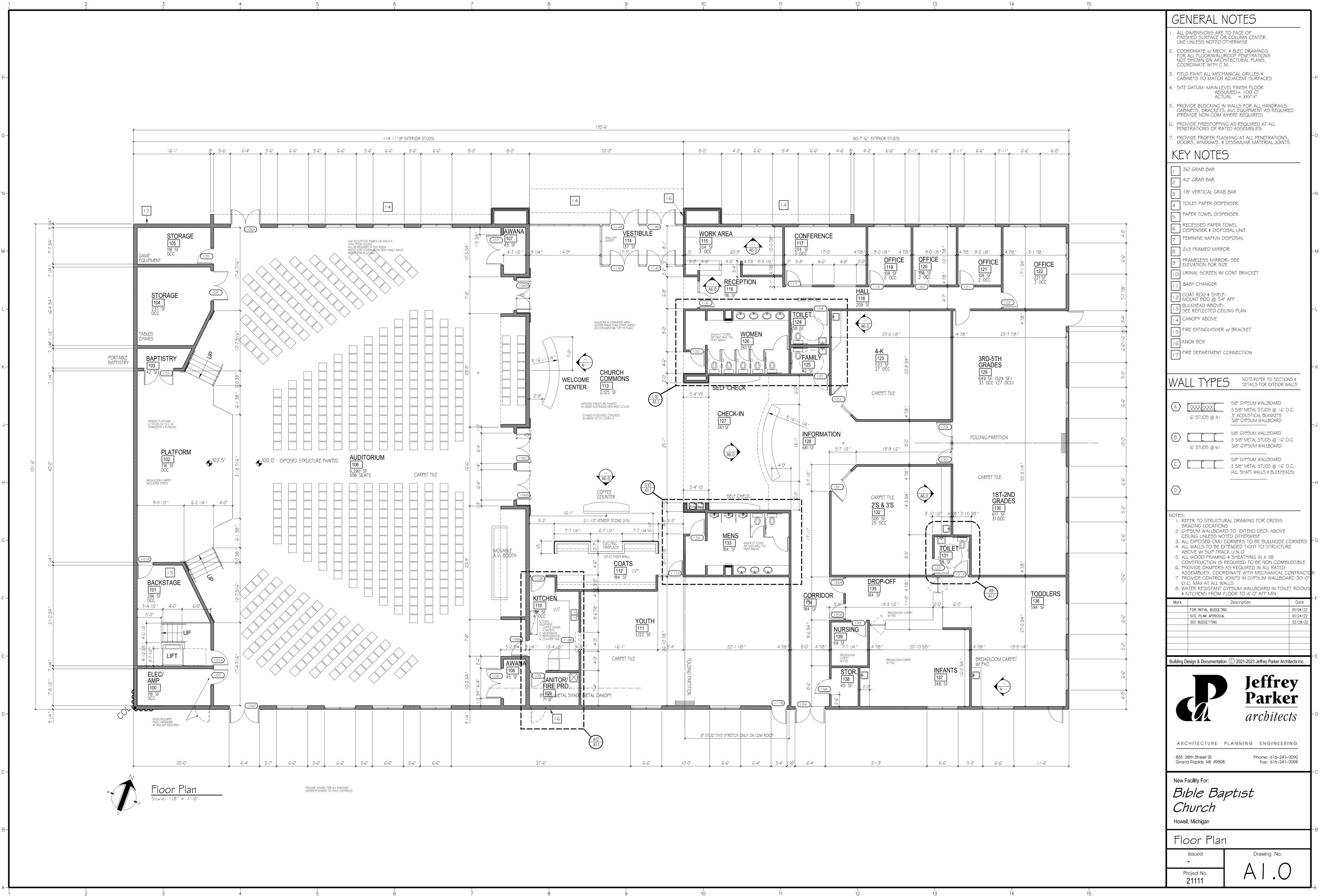
© 2011-2021 Acuity Brands Lighting, Inc. All rights reserved

Catalog Number

Se Capable Luminaire

This item is an A+ capable luminaire, which has been designed and tested to provide consistent color appearance and system-level interoperability.


- All configurations of this luminaire meet the Acuity Brands' specification for chromatic consistency
- This luminaire is A+ Certified when ordered with DTL* controls marked by a shaded background DTL DLL equipped luminaires meet the A+ specification for luminaire to photocontrol
- interoperability1 This luminaire is part of an A+ Certified solution. for ROAM[®] or XPoint[™] Wireless control networks, providing out-of-the-box control compatibility with simple commissioning, when ordered with drivers and control options marked by a shaded background
- To learn more about A+, visit www.contybrand conversions.
- See ordering tree for details.
- A+ Certified Solutions for ROAM require the order of one ROAM node per luminaire. Sold Separately: Link Weimin; Linic to DTL DLL




				\bigvee						
		⁺ 0.0 ⁺ 0 ⁺ 0.0 ⁺ 0								
		+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0								
		⁺ 0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0								
		+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0 +0.0+0.0+								
		+0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0								
		+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0.								
		+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0	0.0 ⁺ 0.0 ⁺ 0.0	+0.0+0.0+0.0+0.0+0.0+0	0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0	0,	+0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0	0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0	0+0.0+0.0+0.0+	+0.0 +0.0 +0.0 +0.0 +0.
		+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0.								
		+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0								
		+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0 +0.0+0.0+								
)		+0.0+0.0+0.0+0.0+0.0+0.0+0 +0.0+0.0+0.0+								
)		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 +0.0 +0.0								
0		+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0 +0.0+0.0+								
0		⁺ 0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0	0.0 ⁺ 0.0 ⁺ 0.0	+0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0	0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0	0,	+0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0	0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0	0,	+0.1 +0.1 +0.1 +0.1 +0.
.0 .0		+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0 +0.0+0.0+								
.0		⁺ 0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0	0.0 ⁺ 0.0 ⁺ 0.0	+0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0	0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0	0,	+0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0	0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0	0 ⁺ 0.0 ⁺ 0.1 ⁺ 0.1 ⁺	+0.1 +0.4 +0.4 +0.
0.0		⁺ 0.0 ⁺ 0 ⁺ 0.0 ⁺ 0								
0.0 0.0		+0.0+0.0+0.0+0.0+0.0+0.0+0 +0.0+0.0+0.0+					/			
0.0		+0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0					/ /	*		
0. 0.		+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0 +0.0+0.0+						\vee \vee	\vee \vee	
0.0	о О	+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0	0.0 ⁺ 0.0 ⁺ 0.0	+0.0 ⁺ 0.0 ⁺	0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0	0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0 ⁺	+0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0	0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0	0 ⁺ 0.0 ⁺ 0.1 ⁺ 0.1 ⁺	+0.1 +0.4 +1 2 *1.
0	0	+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0 +0.0+0.0+				/	/	• •		
Ō.	.0	+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0					+ *	v v v	~/	
	.0	⁺ 0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0	0.0 ⁺ 0.0 ⁺ 0.0	+0.0 ⁺ 0.0 ⁺	0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0	0,0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0	+0.0+0.0+0.0+0	0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0	0 ⁺ 0.1 ⁺ 0.1 ⁺ 0.1 ⁺	⁺ 0.5 ⁺ 0.6 ⁺ 1.4 ⁺
ł).0	+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0 +0.0+0.0+				\		/	/	11
	D.O D.O	+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0	0.0 ⁺ 0.0 ⁺ 0.0	+0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0	0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0	0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0 ⁺	+0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0	0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0	0 ⁺ 0.1 ⁺ 0.1 ⁺ 0.1 ⁺	⁺ 0.3 ⁺ 0.4 ⁺ 0.5 ⁺ 1.0
	0.0	+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0 +0.0+0.0+						_		
	0.0	+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0 +0.0+0.0+								
	0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 +0.0+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0								
	0.0	+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0 +0.0+0.0+								
	0.0 T0.0	+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0	0.0 ⁺ 0.0 ⁺ 0.0	+0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0	0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0	0,	+0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0	0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0	0+0.1+0.1+0.1+	+0.2 +0.3 +0.4 +0.4
	0.0	+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0.								
	0.0	+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0								•
	0.0	+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0 +0.0+0.0+								
	0.0 0.0	+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0 +0.0+0.0+								
		+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0	0.0 ⁺ 0.0 ⁺ 0.0	+0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0	0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0	0,	+0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0	0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0	0 ⁺ 0.0 ⁺ 0.1 ⁺ 0.1 ⁺	+0.2 ⁺ 0.3 ⁺ 0.5 ⁺ 0.3
	0.0	+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0 +0.0+0.0+								
	0.0	+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0 +0.0+0.0+								
	0.0 0.0	+0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0								
	0.0	⁺ 0.0								
	0.0	+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0	0.0 ⁺ 0.0 ⁺ 0.0	⁺ 0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0	0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0	0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0 ⁺	+0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0	0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0	0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.1 ⁺	0.1 ⁺ 0.1 ⁺ 0.2 ⁺ 0.4
	0.0	+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0.								
	0.0	+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0 +0.0+0.0+								
	0.0	+0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0								
	0.0	+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0 +0.0+0.0+								
	0.0 	+0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0	0.0 ⁺ 0.0 ⁺ 0.0	⁺ 0.0	0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0	0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0 ⁺	+0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0	0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0	0+0.0+0.0+0.0+	0.0 ⁺ 0.1 ⁺ 0.1 ⁺ 0.1 ⁺ 0.1
	0.0	⁺ 0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0.0 ⁺ 0 <u>+0.0⁺0.0⁺0.0⁺0.0⁺0.0⁺0.0⁺0</u>								
	0.0	+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0								
	0.0	+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0 +0.0+0.0+								
	0.0 0.0	+0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0								
	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0.0 0.0 0 158	0.0 0.0 0.0 0.0	PARCEL: 11-05	0.0 0.0 0.0 0 -201-159	.0 0.0 0.0 0.0) 0.0 0.0 0.0 (11-
				ALESSANDRINI RENWICK	JOSEPH JANICE					BR
	JENNIFER & FRANKLIN	3825 SUGARBUSH DR, HOWELL, MI 48843		3837 SUGARBUS HOWELL, MI	SH DR,			L, MI 48843 NG: MUPUD		3861 SL HOV
	3813 SUGARBUSH DR, HOWELL, MI 48843	ZONING: MUPUD		ZONING: N						Z
	ZONING: MUPUD			1						

50' WIDE RIGHT OF WAY

⁺0.0 ⁺0.0 ⁺0.0 ⁺0.1 ⁺0.2 ⁺0.2 ⁺0.1 ⁺0.2 ⁺0.0 ⁺ ⁺0.0 ⁺0.0 ⁺0.0 ⁺0.1 ⁺0.3 ⁺0.4 [/]0.3 ⁺0.2 ⁺0.4 ⁺0.0 ⁺ ⁺0.0 ⁺0.0 ⁺0.0 ⁺0.1 ⁺0.5 ⁺0.4 ⁺0.5 ⁺0.4 ⁺0.2 ⁺0.1 ⁺0.0 ⁺ ⁺0.0 ⁺0.0 ⁺0.0 ⁺0.2 ⁺0.7 ⁺//.0 ⁺0.9 ⁺0.6 ⁺0.0 ⁺0.0 ⁺0.1 ⁺0.1 ⁺0.2 ⁺1.0 //1.6 ⁺1.4 ⁺0/9 ⁺0.4 ⁺0.2 ⁺0.0 ⁺ ⁺0.1 ⁺0.1 ⁺0.2 ⁺1.2 ⁺1.2 ⁺1.2 ⁺1.2 ⁺1.8 ^{*} ¹1.8 ^{*}1.8 ^{*}1. ⁺0.1 ⁺0.2 ⁺0.4 ⁺0.4 ⁺1.3 3.1 ^{*}3.1 ^{*}3. $+0.1^{+}0.2^{+}0.5^{+}0.6^{+}1.3$ $4.0^{+}3.9^{+}$ ⁺0.1 ⁺0.1 ⁺0.4 ⁺0.6 ⁺1.0 ⁺4.1 ^{*}3.9 ^{*}3.4 ⁺2.0 ⁺0.8 ⁺0.2 ⁺0.1 ⁺0.1 ⁺0.1 ⁺0.1 ⁺0.1 ⁺0.1 ⁺0.1 ⁺0.1 ⁺0.0 ⁺ ⁺0.1 ⁺0.1 ⁺0.3 ⁺0.4 ⁺0.5 ⁺1.6 ⁺2.5 ^{*}2.1 ^{*}1.6 ⁺0.7 ⁺0.4 ⁺0.5 ⁺0.4 ⁺0.5 ⁺0.4 ⁺0.3 ⁺0.2 ⁺0.2 ⁺0.1 ⁺0.1 ⁺0.1 ⁺0.1 ⁺0.1 ⁺0.1 ⁺0.1 ⁺0.1 ⁺0.1 ⁺0.0 ⁺ ⁺0.1 ⁺0.1 ⁺0.2 ⁺0.3 ⁺0.3 ⁺1.2 ⁺2.5 ^{*}2.1 ^{*}1.4 ^{*}2.8 ⁺0.9 ⁺1.1 ⁺0.8 ⁺0.6 ⁺0.4 ⁺0.8 ⁺0.2 ⁺0.2 ⁺0.1 ⁺ ⁺0.1 ⁺0.1 ⁺0.1 ⁺0.2 ⁺0.2 ⁺0.2 ⁺0.2 ⁺0.2 ⁺0.8 ⁺2.0 (1.8 *1.4 *1.5) (1.4 *1.6 ⁺1.0 ⁺0.7 ⁺0.4 ⁺0.4 ⁺0.4 ⁺0.4 ⁺0.4 ⁺0.4 ⁺0.2 ⁺0.2 ⁺0.1 ⁺ ⁺0.1 ⁺0.1 ⁺0.1 ⁺0.2 ⁺0.2 ⁺0.2 ⁺0.2 ⁺0.2 ⁺0.2 ⁺0.4 ⁺1.4 ⁺1.6 ^{*}2.0 ^{*}2.9 ^{*}2.5 ^{*}8 ⁺1.1 ⁺0.7 ⁺0.4 ⁺0.5 ⁺0.5 ⁺0.5 ⁺0.5 ⁺0.5 ⁺0.4 ⁺0.2 ⁺0.1 ⁺0 $^{+}0.1$ $^{+}0.1$ $^{+}0.1$ $^{+}0.2$ $^{+}0.5$ $^{+}0.5$ $^{+}0.5$ $^{+}0.5$ $^{+}0.6$ $^{+}0.6$ $^{+}0.6$ $^{+}0.2$ $^{+}$ 0⁺0.1⁺0.1⁺0.1⁺0.3⁺0.4⁺0.6⁺1.5⁺4.6^{*}4.5^{*}3.8^{*}2.8^{*}1.9^{*}1.5^{*}1.6^{*}2.1^{*}2.4⁺2.8⁺3.5⁺2.2⁺1.3⁺1.0⁺0.6⁺0.6⁺0.6⁺0.6⁺0.7⁺1.0⁺1.1⁺1.1⁺1.2⁺0.7⁺0.4⁺0.2⁺0.1⁺0.0⁺0. 0⁺0.1⁺0.1⁺0.2⁺0.4⁺0.8⁺2.9⁺3.7⁺4^B^{*}0^{*}2.0¹6⁺1.4⁺1.7^{*}2.2^{*}2.3^{*}3.1^{*}4.0^{*}40^{*}3.1^{*}2.6^{*}2.5^{*}1.8^{*}1.4^{*}1.3^{*}1.6^{*}2.2^{*}2.7^{*}2.6⁺3.5^{*}4.4^{*}3.3⁺2.2⁺1.9⁺1.2⁺0.7⁺0.4⁺0.2⁺0.1⁺0.1⁺0.1⁺0.0⁺
$1^{+}0.1^{+}0.1^{+}0.2^{+}0.5^{+}1.2^{+}2/3^{*}2.3^{*}2.1^{*}2/3^{*}2.3^{*}2.1^{*}2/3^{*}1.4^{+}0.8^{+}0.5^{+}0.6^{+}0.8^{+}1.0^{+}1.4^{+}1.9^{+}2.4^{+}2.$ $1^{+}0.1^{+}0.1^{+}0.4^{+}0.9^{+}1.5^{+}1.8^{+}1.7^{*}1.4^{+}1.8^{+}1.8^{+}1.7^{*}1.4^{+}1.8^{+}1.0^{+}0.6^{+}0.4^{+}0.3^{+}0.3^{+}0.4^{+}0.6^{+}0.8^{+}1.0^{+}1.0^{+}0.6^{+}0.8^{+}1.0^{+}0.7^{+}0.7^{+}0.7^{+}0.8^{+}0.8^{+}1.1^{*}0.9^{+}0.2^{+}0.4^{+}0.3^{+}0.2^{+}0.1^{+}0.1^{+}0.0^{+}0.$ +0.1 + 0.3 + 0.9 + 1.3 + 1.1 + 0.4 + 0.3 + 0.2 + 0.1 + 0.1 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.3+0.2 + 0.6 + 1.6 + 1.6 + 1.6 + 1.6 + 1.6 + 1.6 + 1.0 + 0.4 + 0.2 + 0.1 $^{+0.3}^{+1.4} ^{+2} / 3 ^{+1.9} / 1.4 ^{+0} / 4 ^{+0.5} ^{+0.5} ^{+0.2} ^{+0.1}
^{+0.1} ^{$ $^{+}0.7 ^{+}2.3 ^{+}2.5 ^{+}2.0 ^{+}1.3 ^{+}0.6 ^{+}0.3 ^{+}0.1 ^{+}0.1 ^{+}0.1 ^{+}0.1 ^{+}0.0 ^{+$ +1.3 / 3.4 * 2/8 * 2.2 / 1.3 + 0.5 + 0.2 + 0.1 + 0.1 + 0.025⁺1,1⁺0.3⁺0.1⁺0.1⁺0.0⁺0 2.2 2.0 1.4 + 0.8 + 0.3 + 0.1 + 0.1 + 0.0 *2.6 *2.3 * $\sqrt{7^{+0.9}^{+0.4}^{+0.1}^{+0.1}^{+0.1}^{+0.0}$ $\begin{bmatrix} 1 \\ 2.7 \\ 2.4 \\ 2 \\ 1 \\ 1 \\ 2.7 \\ 2.4 \\ 2 \\ 1 \\ 1 \\ 0.5 \\ 0.5 \\ 0.2 \\ 0.1 \\ 0.1 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\
0.0 \\ 0.0$ $\frac{1}{1.1} + 0.5 + 0.4 + 0.4 + 0.5 + 0.4 + 0.5 + 0.6 + 0.5 + 0.6 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.2 + 0.5$ $1.0^{+}2.7^{+}2.3^{+}1.9^{+}1.2^{+}0.8^{+}0.7^{+}0.8^{+}0.9^{+}1.0^{+}0.6^{+}$ $+1.2 \times 2.5 \times 2.2 \times 1.9 +1.5 +1.3 +1.4 +1.6 +1.5 +1.3 +1.4 +1.6 +1.5 +1.3 +1.4 +1.6 +1.5 +1.3 +1.4 +1.6 \times 1.7 \times 1.5 \times 1.3 \times 1.4 \times 1.4 \times 1.6 \times 1.7 \times 1.5 \times 1.3 \times 1.2 \times 1.4 \times 1.6 \times 1.7 \times 1.5 \times 1.3 \times 1.2 \times 1.4 \times 1.6 \times 1.7 \times 1.5 \times 1.3 \times 1.2 \times 1.4 \times 1.6 \times 1.7 \times 1.5 \times 1.3 \times 1.2 \times 1.4 \times 1.6 \times 1.7 \times 1.5 \times 1.3 \times 1.2 \times 1.4 \times 1.6 \times 1.7 \times 1.5 \times 1.3 \times 1.2 \times 1.4 \times 1.6 \times 1.7 \times 1.5 \times 1.3 \times 1.2 \times 1.4 \times 1.6 \times 1.7 \times 1.5 \times 1.3 \times 1.2 \times 1.4 \times 1.6 \times 1.7 \times 1.5 \times 1.3 \times 1.2 \times 1.4 \times 1.6 \times 1.7 \times 1.5 \times 1.3 \times 1.2 \times 1.4 \times 1.6 \times 1.7 \times 1.5 \times 1.3 \times 1.2 \times 1.2 \times 1.4 \times 1.6 \times 1.7 \times 1.5 \times 1.3 \times 1.2 \times 1.2 \times 1.4 \times 1.6 \times 1.7 \times 1.5 \times 1.3 \times 1.2 \times 1.2 \times 1.4 \times 1.6 \times 1.7 \times 1.5 \times 1.3 \times 1.2 \times 1.2 \times 1.4 \times 1.6 \times 1.7 \times 1.5 \times 1.3 \times 1.2 \times 1.2 \times 1.4 \times 1.6 \times 1.7 \times 1.5 \times 1.3 \times 1.2 \times 1.2 \times 1.4 \times 1.6 \times 1.7 \times 1.5 \times 1.3 \times 1.2 \times 1.2 \times 1.4 \times 1.6 \times 1.7 \times 1.5 \times 1.3 \times 1.2 \times 1.2 \times 1.4 \times 1.6 \times 1.7 \times 1.5 \times 1.3 \times 1.2 \times 1.2 \times 1.4 \times 1.6 \times 1.7 \times 1.5 \times 1.3 \times 1.2 \times 1.2 \times 1.4 \times 1.4 \times 1.6 \times 1.7 \times 1.2 \times 1.2 \times 1.4 \times 1$ + 0.8 + 1.8 + 2.0 + 2.1 + 2.0 + 2.1 + 2.0 + 2.1 + 2.0 + 2.1 + 2.0 + 2.1 + 2.0 + 2.1 + 2.0 + 2.0 + 2.0 + 0.0 +
0.0 + 0.0 + 0.0 + 0.+0.5 + 1.2 + 1.6 + 1.8 + 2.1 + 2.5 + 3.1 + 3.1 + 2.7 + 2.3 + 1.9 + 1.6 + 1.8 + 2.0 + 2.1 + 2.3 + 2.4 + 2.0 + 2.8 + 3.1 + 3.1 + 2.8 + 2.3 $2^{+}0.4^{+}0.8^{+}1.2^{+}1.6^{+}2.1^{+}2.5^{+}2.9^{+}3.5^{+}3.4^{+}2.7^{+}2.2^{+}2.$ 4⁺0.6⁺0.8⁺0.9⁺1.1⁺1.3⁺1.5⁺1.8⁺2.1⁺2.1⁺2.1⁺2.0⁺1.9⁺1.9⁺2.0⁺2.2⁺2.5⁺2.9⁺3.8⁺2.0⁺1.5⁺1.1⁺0.9⁺0.9⁺1.2⁺2.3⁺4.4⁺4.7⁺3.2⁺2.0⁺1.5⁺1.1⁺0.1⁺0.0⁺0. $+0.8^{+}1.1^{+}1.5^{*}2_{10}^{*}2.3^{*}2.5^{*}2.6^{*}2.5^{*}2.2^{*}2.4$ 5⁺0.8⁺1.3⁺19^{*}2.5^{*}3.1^{*}4.4^{*}4.2^{*}3.1^{*}2.6^{*}2.2^{*}2.0^{*}2.1^{*}2.4^{*}2.8^{*}3.5^{*}4.6^{*}4.9^{*}2.9^{*}2.5^{*}19^{*}1.4^{*}1.3^{*}1.4^{*}1.6^{*}1.8^{*}1.9^{*}1.7^{*}1.6^{*}1.4^{*}1.2^{*}0.9^{*}0.8^{*}0.8^{*}0.8^{*}0.9^{*}0.9^{*}0.4⁺0.3⁺0.4⁺0.3⁺0.4⁺0.3⁺0.4⁺0.3⁺0.4⁺0.0
$^{+}0.8^{+}1.2^{+}1.8^{+}2.4^{+}2.8^{+}3.6^{+}3.6^{+}2.9^{+}2.9^{+}2.3^{+}2.1^{+}2.1^{+}2.2^{+}2.3^{+}2.6^{+}2.5^{+}2.3^{+}1.9^{+}1.5^{+}1.3^{+}1.1^{+}1.0^{+}1.0^{+}0.6^{+}0.5^{+}0.5^{+}0.5^{+}0.5^{+}0.4^{+}0.4^{+}0.4^{+}0.3^{+}0.3^{+}0.3^{+}0.3^{+}0.2^{+}0.2^{+}0.2^{+}0.1$ +0.8 +1.0 +1.3 1 .7 *2 1 *2.2 *2.2 *2.1 *2.0 *1.9 *1.8 *1.8 *1.8 *1.8 *1.7 *1.6 *1.9 *1.4 *1.3 *1.2 *1 1 +1.0 +0.8 +0.7 +0.5 +0.4 +0.3 +0.2 +0.1 +0.7 +0.9 +1.1 + .4 *1.6 *1.6 *1.6 *1.6 *1.7 *1.7 *1.7 *1.7 *1.7 *1.6 *1.5 *1.4 *1.3 *1.2 *1.2 *1.2 *1.1 + 0.9 +0.8 +0.6 +0.5 +0.3 +0.2 +0.1 +0.6 +0.8 +1.0 +1.2 *1.3 *1.3 *1.4 *1.4 *1.4 *1.5 *1.6 *1.7 *1.7 *1.6 *1.5 *1.4 *1.4 *1.4 *1.3 *1.3 *1.2 +1.0 +0.8 +0.6 +0.4 +0.3 +0.2 +0.1 NEW CHURCH BUILDING +0.6 +0.7 +0.9 +1. +1.2 +1.3 + 4 +1.6 +1.7 +1.8 +1.8 +1.8 +1.8 +1.8 +2.0 +2.1 +2.2 +2.2 +2.2 +2.0 +1.6 +1.3 +0.9 +0.6 +0.4 +0.2 +0.1 +0.1 +0.1 +0.1 ⁺0.5 ⁺0.7 ⁺0.9 ⁺1.1 ^{*} 1.4 ^{*} 1.6 ^{*} 1.8 ^{*} 2.0 ^{*} 2.1 ^{*} 2.2 ^{*} 2.0 ^{*} 2.0 ^{*} 2.0 ^{*} 2.2 ^{*} 2.5 ^{*} 2.6 ^{*} 2.8 ^{*} 2.6 ^{*} 2.4 ^{*} 2.0 ^{*} 1.5 ⁺ 1.0 ⁺ 0.6 ⁺ 0.4 ⁺ 0.2 ⁺ 0.1 ⁺ 0.1 ⁺ 0.7 ⁺ 0.1 ⁺ 0.1 ⁺ 0.7 ⁺ 0.1 +0.5 +0.7 +0.9 +1.2 +1.6 *2.1 *2.4 *2.6 *2.6 *2.5 *2.3 *2.2 *2.1 *2.2 *2.4 *2.7 *3 *4 1 *3.4 *2.7 *2.2 *1.5 +1.0 +0.6 +0.4 +0.2 +0.1 +0.1 +0.1 +0.4 +0.7 +1.0 +1.4 +1.8 *2 3 *2.7 *3.8 *3.1 *2 8 *2.6 *2.2 *2.0 *2.1 *2.4 *2.8 *3.5 *5.2 *3.7 *2.9 *2.2 *1.6 +1.1 +0.7 +0.4 +0.2 +0.2 +0.1 +0.1 +0.4 +0.6 +0.9 +1.4 +2 0 *2.5 *3.2 *4.6 *4.2 *3.1 *2.6 *2 2 *2.0 *2.0 *2.3 *2.7 *3.4 *4.4 *3 *2 *2 *2 *0 *2 *2 *0 *2.3 *2.7 *3.4 *4.4 *3 *2 *2 *2 *0 *2 *2 *0 *2 *1.2 +0.8 +0.5 +0.3 +0.2 +0.1 +0.1 $2^{+}0.3^{+}0.5^{+}0.8^{+}1.2^{+}18^{+}2.5^{+}3.3^{+}4.5^{+}4.3^{+}3.2^{+}2.7^{+}2.3^{+}2.0^{+}2.0^{+}2.0^{+}2.3^{+}2.6^{+}2.8^{+}3.0^{+}2.8^{+}2.5^{+}2.0^{+}1.5^{+}1.1^{+}0.8^{+}0.5^{+}0.3^{+}0.2^{+}0.1^{+}0.1^{+}0.0$ $+0.2^{+}0.4^{+}0.7^{+}1.1^{+}1.6^{+}2.0^{+}2.4^{+}2.5^{+}2.6^{+}2.5^{+}2.6^{+}2.5^{+}2.2^{+}1.9^{+}1.8^{+}1.8^{+}1.8^{+}1.9^{+}2.1^{+}1.3^{+}1.1^{+}0.8^{+}0.6^{+}0.4^{+}0.3^{+}0.2^{+}0.2^{+}0.2^{+}0.6^{+}2.2^{+}5.1^{+}1.2^{+}0.2^{+$ + 0.2 + 0.4 + 0.6 + 0.8 + 0.9 + 1.2 + 1.3 + 1.3 + 1.3 + 1.3 + 1.3 + 1.3 + 1.3 + 1.4 + 1.5 + 1.6 + 1.8 + 1.4 + 1.5 + 1.6 + 1+ 0.2 + 0.3 + 0.5 + 0.6 + 0.7 + 0.9 + 0.9 + 0.9 + 0.9 + 0.9 + 0.9 + 0.9 + 0.0 +
0.0 + 0 $+0.2^{+}0.3^{+}0.4^{+}0.5^{+}0.6^{*}0.7^{*}0.8^{+}1.0^{+}1.4^{*}2.0^{*}2.8^{*}3.0^{*}3.8^{*}4.7^{*}4.1^{*}3.1^{*}2.8^{*}2.3^{*}1.7^{*}1.7^{*}1.7^{+}0.7^{+}0.5^{+}0.3^{+}0.2^{+}0.2^{+}0.1^{+}0.0^{+$ $^{+}0.1^{+}0.2^{+}0.3^{+}0.3^{+}0.4^{+}0.5^{+}0.6^{+}0.4^{+}0.5^{+}0.6^{+}0.4^{+}2.6^{+}2.6^{+}3.6^{+}4.3^{+}B_{0}$ + 0.1 + 0.2 + 0.2 + 0.3 + 0.4 + 0. $^{+}0.1 ^{+}0.1 ^{+}0.1 ^{+}0.2 ^{+}0.2 ^{+}0.2 ^{+}0.2 ^{+}0.2 ^{+}0.2 ^{+}0.3 ^{+}0.4 ^{+}0.5 ^{+}0.7 ^{+}0.9 ^{+}1.0 ^{+}1.2 ^{+}1.4 ^{+}1.5 ^{+}1.4 ^{+}1.1 ^{+}0.8 ^{+}0.6 ^{+}0.4 ^{+}0.3 ^{+}0.2 ^{+}0.2 ^{+}0.1 ^{+}0.1 ^{+}0.1 ^{+}0.0 ^{+$ ⁺0.1 ⁺0.1 ⁺0.1 ⁺0.1 ⁺0.1 ⁺0.1 ⁺0.2 ⁺0.2 ⁺0.2 ⁺0.2 ⁺0.2 ⁺0.2 ⁺0.3 ⁺0.4 ⁺0.4 ⁺0.5 ⁺0.5 ⁺0.4 ⁺0.3 ⁺0.2 ⁺0.2 ⁺0.1 ⁺0.1 ⁺0.1 ⁺0.1 ⁺0.1 ⁺0.0 ⁺ ⁺0.0 ⁺0.1 ⁺ $^{+}0.0 + 0.0 + 0.0 + 0.0 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.0
+$ $+0.0^{+}0.0^{+$ BROWN, KATHLEEN ROTTACH, PAUL & ASHLEY 3909 SUGARBUSH DR, 3897 SUGARBUSH DR, HAUK, JEFFREY & KAREN 1-05-201-160 GENERAL HOWELL, MI 48843 HOWELL, MI 48843 3873 SUGARBUSH DR, BROWN JAMES & ZONING: MUPUE COMMON ZONING: MUPUD HOWELL, MI 48843 MERRITT KAITLEN ZONING: MUPUD SUGARBUSH DR, ELEMENT OWELL, MI 48843 ZONING: MUPUD

